IWF Functionality for Non-switched Trunking
12.6.3 SSADT
SSADT uses sequence numbers to detect missing PDUs that have been either lost or discarded by a lower SEG-SSCS layer because they were corrupted. Missing PDUs are recovered by selective retransmission. A flow control mechanism allows an SSADT receiver to control the rate at which the peer SSADT transmitter sends information.12.7 VOICE OVER MPLS VoMPLS
MPLS can provide QoS on a per-connection basis as in ATM, and therefore is a suitable technology for voice over packet. The MPLS and Frame Relay Alliance have defined so far the following two specifications, known as implementation agreements: • TDM Transport over MPLS using AAL 1 • I.366.2 Voice Trunking Format over MPLS The first implementation agreement defines a service which emulates a point-to-point TDM circuit, such as fractional DS1E1 n × 64 Kbps, T1, E1, T3, and E3, over MPLS. It assumes that the TDM traffic to be carried over MPLS is already encapsulated in AAL 1 SAR-PDUs see Section 3.7.1, and it simply provides an efficient transport of the SAR-PDUs over an LSP. The second implementation agreement was defined to convey voice calls, voiceband data, such as facsimile and data transmitted over a modem, and fractional T1E1 circuit- mode data, and is similar to the voice over ATM specification described in Section 12.4. It assumes that the information to be carried over MPLS is the output of the AAL Type 2 SSCS for trunking, described above in Section 12.5. This convergence sublayer TDM TRANSPORT OVER MPLS USING AAL 1 313 was defined in ITU-T I.366.2 recommendation, which explains the name of this imple- mentation agreement. The voice trunking information formatted per the ITU-T I.366.2 recommendation, is subsequently encapsulated in CPS-packets, described in Section 3.7.2. The CPS-packets are not transported over CPS-PDUs, but they are transported directly over MPLS. This implementation agreement describes only how the CPS-packets are transported over MPLS, and in view of this, it is commonly referred to as AAL 2 over MPLS A2oMPLS . One method for implementing VoIP is to transport the IP packets containing the voice samples over MPLS. In this case, the voice samples are first encapsulated in RTP, UDP, and IP and then in MPLS. Compressed headers are used in some implementations. The encapsulated information is then conveyed by an MPLS transport arrangement, such as frame relay, ATM, PoS, and Ethernet. A2oMPLS by-passes the RTPUDPIP encapsula- tion, and therefore it provides a more efficient mechanism for voice over MPLS. We now proceed to describe the two implementation agreements in detail.12.8 TDM TRANSPORT OVER MPLS USING AAL 1
The reference architecture for the TDM transport over MPLS using AAL 1, or TDM- MPLS for sort, is shown in Figure 12.19. Each TDM device is connected to a provider edge PE device over a PDH TDM link, such as T1, E1, T3, or E3. The PE is equivalent to the CES IWF see Section 12.3. It is connected to the destination PE over an MPLS network via a point-to-point bidirectional LSP, which has been created either by manual provisioning or by using an MPLS signaling protocol, such as CR-LDP or RSVP-TE. The PE provides multiple functions, including: • Transport of fractional T1E1 i.e. n × 64 Kbps or of an entire signal i.e. of a T1, E1, T3, or E3 over an LSP. • End-to-end preservation of the order of the TDM frames. • Transparent transfer of CAS bits. • A mechanism for the reconstruction of the TDM clocks. • Transport of standard alarms between the two TDM devices. The TDM traffic transmitted to a PE from the TDM device is first encapsulated using AAL 1. Recall from Section 3.7.1 that AAL 1 consists of a SAR sublayer and a con- vergence sublayer CS . The CS performs a variety of functions, such as handling of the cell delay variation, processing of the sequence count, structured and unstructured data transfers, and transfer of timing information. The SAR sublayer is responsible for the bit error detection, and possibly correction, of blocks of data received from CS. It accepts TDM device PE PE LSP TDM link TDM device TDM link MPLS network LSR LSR LSR Figure 12.19 The TDM-MPLS reference architecture.Parts
» COMMUNICATION NETWORKS Connection Oriented Network
» An ATM Connection EXAMPLES OF CONNECTIONS
» An MPLS Connection EXAMPLES OF CONNECTIONS
» A Telephone Connection EXAMPLES OF CONNECTIONS
» A Wavelength Routing Optical Network Connection
» The American National Standards Institute ANSI
» The Institute of Electrical and Electronics Engineering IEEE
» The Internet Engineering Task Force IETF
» The ATM Forum STANDARDS COMMITTEES
» The MPLS and Frame Relay Alliance The Optical Internetworking Forum OIF
» The DSL Forum STANDARDS COMMITTEES
» The Section, Line, and Path Overheads
» The STS-1 Section, Line, and Path Overheads
» THE SONET STS-3 FRAME STRUCTURE
» SONETSDH DEVICES Connection Oriented Network
» Two-fiber Unidirectional Path Switched Ring 2F-UPSR
» Two-fiber Bidirectional Line Switched Ring 2F-BLSR
» Four-fiber Bidirectional Line Switched Ring 4F-BLSR
» GFP Client-independent Functions THE GENERIC FRAMING PROCEDURE GFP
» GFP Client-dependent Functions THE GENERIC FRAMING PROCEDURE GFP
» Virtual Concatenation DATA OVER SONETSDH DOS
» Link Capacity Adjustment Scheme LCAS
» INTRODUCTION Connection Oriented Network
» THE STRUCTURE OF THE HEADER OF THE ATM CELL
» The Transmission Convergence TC Sublayer
» The Physical Medium-Dependent PMD Sublayer
» THE ATM LAYER Connection Oriented Network
» Scheduling Algorithms THE ATM SWITCH ARCHITECTURE
» ATM Adaptation Layer 1 AAL 1
» ATM Adaptation Layer 2 AAL 2
» ATM Adaptation Layer 5 AAL 5
» ATMARP CLASSICAL IP AND ARP OVER ATM
» Types of Parameters TRAFFIC CHARACTERIZATION
» Standardized Traffic Descriptors
» Empirical Models TRAFFIC CHARACTERIZATION
» Probabilistic Models TRAFFIC CHARACTERIZATION
» QUALITY OF SERVICE QOS PARAMETERS
» The CBR Service ATM SERVICE CATEGORIES
» The RT-VBR Service ATM SERVICE CATEGORIES
» The NRT-VBR Service ATM SERVICE CATEGORIES
» The UBR Service ATM SERVICE CATEGORIES
» The ABR Service ATM SERVICE CATEGORIES
» The GFR Service ATM SERVICE CATEGORIES
» CONGESTION CONTROL Connection Oriented Network
» PREVENTIVE CONGESTION CONTROL Connection Oriented Network
» Equivalent Bandwidth CALL ADMISSION CONTROL CAC
» The ATM Block Transfer ABT Scheme
» Virtual Path Connections CALL ADMISSION CONTROL CAC
» The Generic Cell Rate Algorithm GCRA
» Packet Discard Schemes BANDWIDTH ENFORCEMENT
» The Available Bit Rate ABR Service
» THE SIGNALING PROTOCOL STACK
» The SSCOP THE SIGNALING ATM ADAPTATION LAYER SAAL
» Primitives THE SIGNALING ATM ADAPTATION LAYER SAAL
» THE SIGNALING CHANNEL Connection Oriented Network
» ATM ADDRESSING Connection Oriented Network
» THE FORMAT OF THE SIGNALING MESSAGE
» Information Elements IE THE SIGNALING PROTOCOL Q.2931
» Q.2931 Messages THE SIGNALING PROTOCOL Q.2931
» The IP Header THE INTERNET PROTOCOL IP: A PRIMER
» IP Addresses THE INTERNET PROTOCOL IP: A PRIMER
» Label Allocation Schemes THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» The Next Hop Label Forwarding Entry NHLFE
» Explicit Routing THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» An Example of the Use of the Label Stack
» Schemes for Setting up an LSP
» Hybrid ATM Switches MPLS OVER ATM
» Label Spaces, LDP Sessions, and Hello Adjacencies
» The LDP Messages THE LABEL DISTRIBUTION PROTOCOL LDP
» CR-LSP Setup Procedure THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» The Label Mapping Message The Traffic Parameters TLV
» Classes of Service THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» Reservation Styles THE RESOURCE RESERVATION PROTOCOL RSVP
» Soft State THE RESOURCE RESERVATION PROTOCOL RSVP
» The Path Message THE RESOURCE RESERVATION PROTOCOL RSVP
» The Resv Message THE RESOURCE RESERVATION PROTOCOL RSVP
» Service Classes and Reservation Styles
» The RSVP-TE Path and Resv Messages
» RSVP-TE Extensions THE RESOURCE RESERVATION PROTOCOL – TRAFFIC
» WDM OPTICAL NETWORKS Connection Oriented Network
» Multi-mode and Single-mode Optical Fibers
» Impairments HOW LIGHT IS TRANSMITTED THROUGH AN OPTICAL FIBER
» Photo-detectors and Optical Receivers
» Optical Amplifiers COMPONENTS
» Optical Cross-connects OXCs COMPONENTS
» Lightpaths WAVELENGTH ROUTING NETWORKS
» Traffic Grooming WAVELENGTH ROUTING NETWORKS
» Point-to-point Links WDM Optical Rings
» Mesh Optical Networks PROTECTION SCHEMES
» The Optical Channel Och Frame
» Overhead Types THE ITU-T G.709 STANDARD – THE DIGITAL WRAPPER
» CONTROL PLANE ARCHITECTURES Connection Oriented Network
» RSVP-TE Extensions For GMPLS
» LDP Extensions for UNI Signaling
» RSVP Extensions For UNI Signaling
» A Space Switch OPTICAL PACKET SWITCHING
» Reservation and Release of Resources in an OXC
» Scheduling of Bursts at an OBS Node
» Lost Bursts OPTICAL BURST SWITCHING OBS
» Signaling Messages THE JUMPSTART PROJECT
» The Signaling Message Structure
» Addressing THE JUMPSTART PROJECT
» The Routing Architecture THE JUMPSTART PROJECT
» The Discrete Multi-tone DMT Technique
» Bearer Channels THE ADSL-BASED ACCESS NETWORKS
» The ADSL Super Frame Schemes for Accessing Network Service Providers
» The ADSL2 and ADSL2+ Standards
» The Physical Layer THE CABLE-BASED ACCESS NETWORK
» The DOCSIS MAC Protocol Operation
» Frame Structures for Downstream and Upstream Transmission
» The PLOAM Cell THE ATM PASSIVE OPTICAL NETWORK
» The Divided-slots Cell THE ATM PASSIVE OPTICAL NETWORK
» Churning THE ATM PASSIVE OPTICAL NETWORK
» Ranging THE ATM PASSIVE OPTICAL NETWORK
» Channel-Associated Signaling CAS BACKGROUND
» Narrowband ISDN N-ISDN BACKGROUND
» Digital Subscriber Signaling System No. 1 DSS1
» VOICE OVER ATM SPECIFICATIONS
» Structured DS1E1J2 N × 64 Kbps Service DS1E1J2 Unstructured Service
» Switched and Non-Switched Trunking
» IWF Functionality for Switched Trunking
» IWF Functionality for Non-switched Trunking
» User Functions THE AAL 2 SERVICE-SPECIFIC CONVERGENCE SUBLAYER SSCS
» The Service-Specific Convergence Sublayer
» SSSAR THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSTED THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSADT THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
Show more