The Physical Medium-Dependent PMD Sublayer
3.6.1 The Shared Memory Switch
The main feature of this switch architecture is a shared memory that is used to store all of the cells coming in from the input ports. The cells in the shared memory are organized into linked lists – one per output port see Figure 3.9. The shared memory is dual ported; that is, it can read and write at the same time. At the beginning of each slot, each input port that holds a cell, writes it into the shared memory. At the same time, each output port reads the cell from the top of its linked list assuming that the linked list has a cell and transmits it out. If N is the number of inputoutput ports, then one slot can write up to N cells into the shared memory and transmit up to N cells out of the shared memory. If the speed of transmission on each incoming and outgoing link is V , then the switch can keep up at maximum arrival rate, if the memory’s bandwidth is at least 2NV. The total number of cells that can be stored in the memory is bounded by the memory’s capacity B, expressed in cells. Modern shared memory switches have a large shared memory and can hold hundreds of thousands of cells. The total number of cells allowed to queue for each output port i is limited to B i , where B i B . That is, the linked list associated with output port i cannot exceed B i . This constraint is necessary for avoiding starvation of other output ports when output port i gets hot ; that is, when a lot of the incoming traffic goes to that particular port. When this happens, the linked list associated . . . ... . . . ... Shared memory 1 N N 1 Figure 3.9 A shared memory switch.Parts
» COMMUNICATION NETWORKS Connection Oriented Network
» An ATM Connection EXAMPLES OF CONNECTIONS
» An MPLS Connection EXAMPLES OF CONNECTIONS
» A Telephone Connection EXAMPLES OF CONNECTIONS
» A Wavelength Routing Optical Network Connection
» The American National Standards Institute ANSI
» The Institute of Electrical and Electronics Engineering IEEE
» The Internet Engineering Task Force IETF
» The ATM Forum STANDARDS COMMITTEES
» The MPLS and Frame Relay Alliance The Optical Internetworking Forum OIF
» The DSL Forum STANDARDS COMMITTEES
» The Section, Line, and Path Overheads
» The STS-1 Section, Line, and Path Overheads
» THE SONET STS-3 FRAME STRUCTURE
» SONETSDH DEVICES Connection Oriented Network
» Two-fiber Unidirectional Path Switched Ring 2F-UPSR
» Two-fiber Bidirectional Line Switched Ring 2F-BLSR
» Four-fiber Bidirectional Line Switched Ring 4F-BLSR
» GFP Client-independent Functions THE GENERIC FRAMING PROCEDURE GFP
» GFP Client-dependent Functions THE GENERIC FRAMING PROCEDURE GFP
» Virtual Concatenation DATA OVER SONETSDH DOS
» Link Capacity Adjustment Scheme LCAS
» INTRODUCTION Connection Oriented Network
» THE STRUCTURE OF THE HEADER OF THE ATM CELL
» The Transmission Convergence TC Sublayer
» The Physical Medium-Dependent PMD Sublayer
» THE ATM LAYER Connection Oriented Network
» Scheduling Algorithms THE ATM SWITCH ARCHITECTURE
» ATM Adaptation Layer 1 AAL 1
» ATM Adaptation Layer 2 AAL 2
» ATM Adaptation Layer 5 AAL 5
» ATMARP CLASSICAL IP AND ARP OVER ATM
» Types of Parameters TRAFFIC CHARACTERIZATION
» Standardized Traffic Descriptors
» Empirical Models TRAFFIC CHARACTERIZATION
» Probabilistic Models TRAFFIC CHARACTERIZATION
» QUALITY OF SERVICE QOS PARAMETERS
» The CBR Service ATM SERVICE CATEGORIES
» The RT-VBR Service ATM SERVICE CATEGORIES
» The NRT-VBR Service ATM SERVICE CATEGORIES
» The UBR Service ATM SERVICE CATEGORIES
» The ABR Service ATM SERVICE CATEGORIES
» The GFR Service ATM SERVICE CATEGORIES
» CONGESTION CONTROL Connection Oriented Network
» PREVENTIVE CONGESTION CONTROL Connection Oriented Network
» Equivalent Bandwidth CALL ADMISSION CONTROL CAC
» The ATM Block Transfer ABT Scheme
» Virtual Path Connections CALL ADMISSION CONTROL CAC
» The Generic Cell Rate Algorithm GCRA
» Packet Discard Schemes BANDWIDTH ENFORCEMENT
» The Available Bit Rate ABR Service
» THE SIGNALING PROTOCOL STACK
» The SSCOP THE SIGNALING ATM ADAPTATION LAYER SAAL
» Primitives THE SIGNALING ATM ADAPTATION LAYER SAAL
» THE SIGNALING CHANNEL Connection Oriented Network
» ATM ADDRESSING Connection Oriented Network
» THE FORMAT OF THE SIGNALING MESSAGE
» Information Elements IE THE SIGNALING PROTOCOL Q.2931
» Q.2931 Messages THE SIGNALING PROTOCOL Q.2931
» The IP Header THE INTERNET PROTOCOL IP: A PRIMER
» IP Addresses THE INTERNET PROTOCOL IP: A PRIMER
» Label Allocation Schemes THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» The Next Hop Label Forwarding Entry NHLFE
» Explicit Routing THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» An Example of the Use of the Label Stack
» Schemes for Setting up an LSP
» Hybrid ATM Switches MPLS OVER ATM
» Label Spaces, LDP Sessions, and Hello Adjacencies
» The LDP Messages THE LABEL DISTRIBUTION PROTOCOL LDP
» CR-LSP Setup Procedure THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» The Label Mapping Message The Traffic Parameters TLV
» Classes of Service THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» Reservation Styles THE RESOURCE RESERVATION PROTOCOL RSVP
» Soft State THE RESOURCE RESERVATION PROTOCOL RSVP
» The Path Message THE RESOURCE RESERVATION PROTOCOL RSVP
» The Resv Message THE RESOURCE RESERVATION PROTOCOL RSVP
» Service Classes and Reservation Styles
» The RSVP-TE Path and Resv Messages
» RSVP-TE Extensions THE RESOURCE RESERVATION PROTOCOL – TRAFFIC
» WDM OPTICAL NETWORKS Connection Oriented Network
» Multi-mode and Single-mode Optical Fibers
» Impairments HOW LIGHT IS TRANSMITTED THROUGH AN OPTICAL FIBER
» Photo-detectors and Optical Receivers
» Optical Amplifiers COMPONENTS
» Optical Cross-connects OXCs COMPONENTS
» Lightpaths WAVELENGTH ROUTING NETWORKS
» Traffic Grooming WAVELENGTH ROUTING NETWORKS
» Point-to-point Links WDM Optical Rings
» Mesh Optical Networks PROTECTION SCHEMES
» The Optical Channel Och Frame
» Overhead Types THE ITU-T G.709 STANDARD – THE DIGITAL WRAPPER
» CONTROL PLANE ARCHITECTURES Connection Oriented Network
» RSVP-TE Extensions For GMPLS
» LDP Extensions for UNI Signaling
» RSVP Extensions For UNI Signaling
» A Space Switch OPTICAL PACKET SWITCHING
» Reservation and Release of Resources in an OXC
» Scheduling of Bursts at an OBS Node
» Lost Bursts OPTICAL BURST SWITCHING OBS
» Signaling Messages THE JUMPSTART PROJECT
» The Signaling Message Structure
» Addressing THE JUMPSTART PROJECT
» The Routing Architecture THE JUMPSTART PROJECT
» The Discrete Multi-tone DMT Technique
» Bearer Channels THE ADSL-BASED ACCESS NETWORKS
» The ADSL Super Frame Schemes for Accessing Network Service Providers
» The ADSL2 and ADSL2+ Standards
» The Physical Layer THE CABLE-BASED ACCESS NETWORK
» The DOCSIS MAC Protocol Operation
» Frame Structures for Downstream and Upstream Transmission
» The PLOAM Cell THE ATM PASSIVE OPTICAL NETWORK
» The Divided-slots Cell THE ATM PASSIVE OPTICAL NETWORK
» Churning THE ATM PASSIVE OPTICAL NETWORK
» Ranging THE ATM PASSIVE OPTICAL NETWORK
» Channel-Associated Signaling CAS BACKGROUND
» Narrowband ISDN N-ISDN BACKGROUND
» Digital Subscriber Signaling System No. 1 DSS1
» VOICE OVER ATM SPECIFICATIONS
» Structured DS1E1J2 N × 64 Kbps Service DS1E1J2 Unstructured Service
» Switched and Non-Switched Trunking
» IWF Functionality for Switched Trunking
» IWF Functionality for Non-switched Trunking
» User Functions THE AAL 2 SERVICE-SPECIFIC CONVERGENCE SUBLAYER SSCS
» The Service-Specific Convergence Sublayer
» SSSAR THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSTED THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSADT THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
Show more