The LDP PDU Format
7.2 THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
PROTOCOL CR-LDP CR-LDP is a label distribution protocol based on LDP. As described above, LDP can be used to set up an LSP associated with a particular FEC. CR-LDP is used to set up a unidirectional point-to-point explicitly routed LSP, referred to as the constrained-based routed label switched path CR-LSP. An LSP is set up as a result of the routing information in an IP network using the shortest path algorithm. A CR-LSP is calculated at the source LSR based on criteria not limited to routing information, such as explicit routing and QoS-based routing. The route then signaled to the other nodes along the path which obey the source’s routing instructions. This routing technique, referred to as source routing, is also used in ATM. A CR-LSP in MPLS is analogous to a connection in ATM, only it is unidirectional. The ATM signaling procedures will automatically set up a bidirectional connection between two ATM hosts, where each direction of the connection can be associated with different traffic and QoS parameters. A bidirectional CR-LSP between LSRs 1 and 2 can only be created by setting up one CR-LSP from LSR 1 to LSR 2 and a separate one from LSR 2 to LSR 1. As in the case of an LSP, a CR-LSP has an ingress and an egress LSR. CR-LSPs can be used in a variety of ways. For instance, they can be used in an IP network to do load balancing. That is, the traffic among its links can be evenly distributed by forcing some of the traffic over CR-LSPs, which pass through lesser-utilized links. CR-LSPs can also be used to create tunnels in MPLS, and introduce routes based on a QoS criterion, such as minimization of the total end-to-end delay, and maximization of throughput. For example, let us consider the MPLS network in Figure 7.9, and let us B A E C F D G Figure 7.9 An example of a CR-LSP. 158 LABEL DISTRIBUTION PROTOCOLS assume that the path between the ingress LSR A and the egress LSR G, calculated using OSPF, passes through E and F. Using CR-LDP we can set up a CR-LSP that satisfies a QoS criterion, such as minimize the end-to-end delay. For instance, if LSRs B, C, and D are not heavily utilized, routing the CR-LSP through these LSRs will reduce the end-to-end delay, even though the number of hops will be higher than the E-to-F path. The following are some of the features of CR-LDP: • CR-LDP is based on LDP, and runs on top of TCP for reliability. • The CR-LDP state-machine does not require periodic refreshment. • CR-LDP permits strict and loose explicit routes. This allows the ingress LSR some degree of imperfect knowledge about the network topology see Section 6.2.3. The source LSR might also request route pinning, which fixes the path through a loosely defined route so that it does not change when a better next hop becomes available. • CR-LDP permits path preemption by assigning setupholding priorities to CR-LSPs. If a route for a high-priority CR-LSP cannot be found, then existing lower-priority CR-LSPs can be rerouted to permit the higher-priority CR-LSP to be established. • The network operator can classify network resources in various ways. CR-LDP per- mits the indication of the resource classes that can be used when a CR-LSP is being established. • As in the case of ATM, CR-LDP allows the specification of traffic parameters on a CR-LSP and how these parameters should be policed. CR-LDP depends on the following minimal LDP functionality: • Basic andor extended discovery mechanism • Label request message for downstream on demand with ordered control • Label mapping message for downstream on demand with ordered control • Notification messages • Label withdraw and release messages • Loop detection for loosely routed segments7.2.1 CR-LSP Setup Procedure
A CR-LSP is set up using downstream on demand allocation with ordered control. Recall that in the downstream on demand allocation scheme, each LSR binds an incoming label to a FEC and creates an appropriate entry in its LFIB. However, it does not advertise its label mapping to its neighbors as in the unsolicited downstream allocation scheme. Instead, an upstream LSR obtains the label mapping by issuing a request. In the ordered control scheme, the allocation of labels proceeds backwards from the egress LSR towards the ingress LSR. Specifically, an LSR only binds a label to a FEC if it is the egress LSR for that FEC, or if it has already received a label binding for that FEC from its next hop LSR. An example of how a CR-LSP is set up is shown in Figure 7.10. Let us assume that LSR A has been requested to establish a CR-LSP to LSR E. A request to set up a CR- LSP to LSR E might originate from a management system or an application. LSR A calculates the explicit route using information provided by the management system, or the application, or from a routing table, and creates the label request message. The explicitParts
» COMMUNICATION NETWORKS Connection Oriented Network
» An ATM Connection EXAMPLES OF CONNECTIONS
» An MPLS Connection EXAMPLES OF CONNECTIONS
» A Telephone Connection EXAMPLES OF CONNECTIONS
» A Wavelength Routing Optical Network Connection
» The American National Standards Institute ANSI
» The Institute of Electrical and Electronics Engineering IEEE
» The Internet Engineering Task Force IETF
» The ATM Forum STANDARDS COMMITTEES
» The MPLS and Frame Relay Alliance The Optical Internetworking Forum OIF
» The DSL Forum STANDARDS COMMITTEES
» The Section, Line, and Path Overheads
» The STS-1 Section, Line, and Path Overheads
» THE SONET STS-3 FRAME STRUCTURE
» SONETSDH DEVICES Connection Oriented Network
» Two-fiber Unidirectional Path Switched Ring 2F-UPSR
» Two-fiber Bidirectional Line Switched Ring 2F-BLSR
» Four-fiber Bidirectional Line Switched Ring 4F-BLSR
» GFP Client-independent Functions THE GENERIC FRAMING PROCEDURE GFP
» GFP Client-dependent Functions THE GENERIC FRAMING PROCEDURE GFP
» Virtual Concatenation DATA OVER SONETSDH DOS
» Link Capacity Adjustment Scheme LCAS
» INTRODUCTION Connection Oriented Network
» THE STRUCTURE OF THE HEADER OF THE ATM CELL
» The Transmission Convergence TC Sublayer
» The Physical Medium-Dependent PMD Sublayer
» THE ATM LAYER Connection Oriented Network
» Scheduling Algorithms THE ATM SWITCH ARCHITECTURE
» ATM Adaptation Layer 1 AAL 1
» ATM Adaptation Layer 2 AAL 2
» ATM Adaptation Layer 5 AAL 5
» ATMARP CLASSICAL IP AND ARP OVER ATM
» Types of Parameters TRAFFIC CHARACTERIZATION
» Standardized Traffic Descriptors
» Empirical Models TRAFFIC CHARACTERIZATION
» Probabilistic Models TRAFFIC CHARACTERIZATION
» QUALITY OF SERVICE QOS PARAMETERS
» The CBR Service ATM SERVICE CATEGORIES
» The RT-VBR Service ATM SERVICE CATEGORIES
» The NRT-VBR Service ATM SERVICE CATEGORIES
» The UBR Service ATM SERVICE CATEGORIES
» The ABR Service ATM SERVICE CATEGORIES
» The GFR Service ATM SERVICE CATEGORIES
» CONGESTION CONTROL Connection Oriented Network
» PREVENTIVE CONGESTION CONTROL Connection Oriented Network
» Equivalent Bandwidth CALL ADMISSION CONTROL CAC
» The ATM Block Transfer ABT Scheme
» Virtual Path Connections CALL ADMISSION CONTROL CAC
» The Generic Cell Rate Algorithm GCRA
» Packet Discard Schemes BANDWIDTH ENFORCEMENT
» The Available Bit Rate ABR Service
» THE SIGNALING PROTOCOL STACK
» The SSCOP THE SIGNALING ATM ADAPTATION LAYER SAAL
» Primitives THE SIGNALING ATM ADAPTATION LAYER SAAL
» THE SIGNALING CHANNEL Connection Oriented Network
» ATM ADDRESSING Connection Oriented Network
» THE FORMAT OF THE SIGNALING MESSAGE
» Information Elements IE THE SIGNALING PROTOCOL Q.2931
» Q.2931 Messages THE SIGNALING PROTOCOL Q.2931
» The IP Header THE INTERNET PROTOCOL IP: A PRIMER
» IP Addresses THE INTERNET PROTOCOL IP: A PRIMER
» Label Allocation Schemes THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» The Next Hop Label Forwarding Entry NHLFE
» Explicit Routing THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» An Example of the Use of the Label Stack
» Schemes for Setting up an LSP
» Hybrid ATM Switches MPLS OVER ATM
» Label Spaces, LDP Sessions, and Hello Adjacencies
» The LDP Messages THE LABEL DISTRIBUTION PROTOCOL LDP
» CR-LSP Setup Procedure THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» The Label Mapping Message The Traffic Parameters TLV
» Classes of Service THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» Reservation Styles THE RESOURCE RESERVATION PROTOCOL RSVP
» Soft State THE RESOURCE RESERVATION PROTOCOL RSVP
» The Path Message THE RESOURCE RESERVATION PROTOCOL RSVP
» The Resv Message THE RESOURCE RESERVATION PROTOCOL RSVP
» Service Classes and Reservation Styles
» The RSVP-TE Path and Resv Messages
» RSVP-TE Extensions THE RESOURCE RESERVATION PROTOCOL – TRAFFIC
» WDM OPTICAL NETWORKS Connection Oriented Network
» Multi-mode and Single-mode Optical Fibers
» Impairments HOW LIGHT IS TRANSMITTED THROUGH AN OPTICAL FIBER
» Photo-detectors and Optical Receivers
» Optical Amplifiers COMPONENTS
» Optical Cross-connects OXCs COMPONENTS
» Lightpaths WAVELENGTH ROUTING NETWORKS
» Traffic Grooming WAVELENGTH ROUTING NETWORKS
» Point-to-point Links WDM Optical Rings
» Mesh Optical Networks PROTECTION SCHEMES
» The Optical Channel Och Frame
» Overhead Types THE ITU-T G.709 STANDARD – THE DIGITAL WRAPPER
» CONTROL PLANE ARCHITECTURES Connection Oriented Network
» RSVP-TE Extensions For GMPLS
» LDP Extensions for UNI Signaling
» RSVP Extensions For UNI Signaling
» A Space Switch OPTICAL PACKET SWITCHING
» Reservation and Release of Resources in an OXC
» Scheduling of Bursts at an OBS Node
» Lost Bursts OPTICAL BURST SWITCHING OBS
» Signaling Messages THE JUMPSTART PROJECT
» The Signaling Message Structure
» Addressing THE JUMPSTART PROJECT
» The Routing Architecture THE JUMPSTART PROJECT
» The Discrete Multi-tone DMT Technique
» Bearer Channels THE ADSL-BASED ACCESS NETWORKS
» The ADSL Super Frame Schemes for Accessing Network Service Providers
» The ADSL2 and ADSL2+ Standards
» The Physical Layer THE CABLE-BASED ACCESS NETWORK
» The DOCSIS MAC Protocol Operation
» Frame Structures for Downstream and Upstream Transmission
» The PLOAM Cell THE ATM PASSIVE OPTICAL NETWORK
» The Divided-slots Cell THE ATM PASSIVE OPTICAL NETWORK
» Churning THE ATM PASSIVE OPTICAL NETWORK
» Ranging THE ATM PASSIVE OPTICAL NETWORK
» Channel-Associated Signaling CAS BACKGROUND
» Narrowband ISDN N-ISDN BACKGROUND
» Digital Subscriber Signaling System No. 1 DSS1
» VOICE OVER ATM SPECIFICATIONS
» Structured DS1E1J2 N × 64 Kbps Service DS1E1J2 Unstructured Service
» Switched and Non-Switched Trunking
» IWF Functionality for Switched Trunking
» IWF Functionality for Non-switched Trunking
» User Functions THE AAL 2 SERVICE-SPECIFIC CONVERGENCE SUBLAYER SSCS
» The Service-Specific Convergence Sublayer
» SSSAR THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSTED THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSADT THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
Show more