Katti-Panjer information getdocab62. 279KB Jun 04 2011 12:04:50 AM

1. Since E[r 1 S; P, Q] = 0, the functional J Q,1 S is in fact the variance of the score r 1 S; P, Q. 2. In the case of a single summand S = Y 1 ∼ C Q R, if Q is the point mass at 1 then the score r 1 reduces to the score function ρ Y in 1.2. Thus J Q,1 can be seen as a generalization of the scaled Fisher information J π of [23] defined in 1.1. 3. Again in the case of a single summand S = Y 1 ∼ C Q R, we have that r 1 s; P, Q ≡ 0 if and only if R = R, i.e., if and only if R is the Poλ distribution. Thus in this case J Q,1 S = 0 if and only if S ∼ CPoλ,Q for some λ 0. 4. In general, writing F i for the distribution of the leave-one-out sum P j 6=i Y i , r 1 ·; P, Q ≡ 0 ⇐⇒ X p i F i ∗ C Q i R i − C Q i R i ≡ 0. Hence within the class of ultra log-concave R i a class which includes compound Bernoulli sums, since the moments of R i are no smaller than the moments of R i with equality if and only if R i is Poisson, the score r 1 ·; P, Q ≡ 0 if and only if the R i are all Poisson, i.e., if and only if P is compound Poisson.

3.2 Katti-Panjer information

Recall that the recursion 2.1 characterizing the Poisson distribution was used as part of the mo- tivation for the definition of the scaled Fisher information J π in 1.1 and 1.2. In an analogous manner, we employ the Katti-Panjer recursion 2.2 that characterizes the compound Poisson law to define another information functional. Definition 3.2. Given a Z + -valued random variable Y ∼ P and an arbitrary distribution Q on N, the Katti-Panjer information of Y relative to Q is defined as, J Q,2 Y := E[r 2 Y ; P, Q 2 ], where the score function r 2 is, r 2 y; P, Q := λ P ∞ j=1 jQ jP y − j P y − y, y ∈ Z + , and where λ is the ratio of the mean of Y to the mean of Q. From the definition of the score function r 2 it is immediate that, E[r 2 Y ; P, Q] = X y P yr 2 y; P, Q = λ X y:P y X j jQ jP y − j − EY = λ X j jQ j − EY = 0, therefore J Q,2 Y is equal to the variance of r 2 Y ; P, Q. [This computation assumes that P has full support on Z + ; see the last paragraph of this section for further discussion of this point.] Also, in 1353 view of the Katti-Panjer recursion 2.2 we have that J Q,2 Y = 0 if and only if r 2 y; P, Q vanishes for all y, which happens if and only if the distribution P of Y is CPo λ, Q. In the special case when Q is the unit mass at 1, the Katti-Panjer information of Y ∼ P reduces to, J Q,2 Y = E h λPY − 1 PY − Y 2 i = λ 2 I Y + σ 2 − 2λ, 3.1 where λ, σ 2 are the mean and variance of Y , respectively, and IY denotes the functional, I Y := E h PY − 1 PY − 1 2 i , 3.2 proposed by Johnstone and MacGibbon [21] as a discrete version of the Fisher information with the convention P −1 = 0. Therefore, in view of 3.1 we can think of J Q,2 Y as a generalization of the “Fisher information” functional IY of [21]. Finally note that, although the definition of J Q,2 is more straightforward than that of J Q,1 , the Katti- Panjer information suffers the drawback that – like its simpler version IY in [21] – it is only finite for random variables Y with full support on Z + . As noted in [22] and [23], the definition of IY cannot simply be extended to all Z + -valued random variables by just ignoring the points outside the support of P, where the integrand in 3.2 becomes infinite. This was, partly, the motivation for the definition of the scaled scored function J π in [23]. Similarly, in the present setting, the important properties of J Q,2 established in the following sections fail unless P has full support, unlike for the size-biased information J Q,1 . 4 Subadditivity The subadditivity property of Fisher information Property C in the Introduction plays a key role in the information-theoretic analysis of normal approximation bounds. The corresponding property for the scaled Fisher information Proposition 3 of [23] plays an analogous role in the case of Poisson approximation. Both of these results are based on a convolution identity for each of the two underlying score functions. In this section we develop natural analogs of the convolution identities and resulting subadditivity properties for the functionals J Q,1 and J Q,2 .

4.1 Subadditivity of the size-biased information

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52