Size-biased information getdocab62. 279KB Jun 04 2011 12:04:50 AM

Proof of Theorem 1.1. Let Z n ∼ Poλ and T n = P n i=1 B i . Then the distribution of S n is also that of the sum P T n i=1 X i ; similarly, the CPo λ, Q law is the distribution of the sum Z = P Z n i=1 X i . Thus, writing X = X i , we can express S n = f X, T n and Z = f X, Z n , where the function f is the same in both places. Applying the data-processing inequality and then the chain rule for relative entropy [13], DP S n kCPoλ,Q ≤ DP X,T n kP X,Z n = h X i DP X i kP X i i + DP T n kP Z n = DP T n kPoλ, and the result follows from the Poisson approximation bound 2.4. 3 Information functionals This section contains the definitions of two new information functionals for discrete random vari- ables, along with some of their basic properties.

3.1 Size-biased information

For the first information functional we consider, some knowledge of the summation structure of the random variables concerned is required. Definition 3.1. Consider the sum S = P n i=1 Y i ∼ P of n independent Z + -valued random variables Y i ∼ P i = C Q i R i , i = 1, 2, . . . , n. For each j, let Y ′ j ∼ C Q j R j be independent of the Y i , and let S j ∼ P j be the same sum as S but with Y ′ j in place of Y j . Let q i denote the mean of each Q i , p i = EY i q i and λ = P i p i . Then the size-biased information of S relative to the sequence Q = Q i is, J Q,1 S := λE[r 1 S; P, Q 2 ], where the score function r 1 is defined by, r 1 s; P, Q := P i p i P i s λPs − 1, s ∈ Z + . For simplicity, in the case of a single summand S = Y 1 ∼ P 1 = C Q R we write r 1 ·; P,Q and J Q,1 Y for the score and the size-biased information of S, respectively. [Note that the score function r 1 is only infinite at points x outside the support of P, which do not affect the definition of the size-biased information functional.] Although at first sight the definition of J Q,1 seems restricted to the case when all the summands Y i have distributions of the form C Q i R i , we note that this can always be achieved by taking p i = Pr{Y i ≥ 1 } and letting R i ∼ Bernp i and Q i k = Pr{Y i = k|Y i ≥ 1}, for k ≥ 1, as before. We collect below some of the basic properties of J Q,1 that follow easily from the definition. 1352 1. Since E[r 1 S; P, Q] = 0, the functional J Q,1 S is in fact the variance of the score r 1 S; P, Q. 2. In the case of a single summand S = Y 1 ∼ C Q R, if Q is the point mass at 1 then the score r 1 reduces to the score function ρ Y in 1.2. Thus J Q,1 can be seen as a generalization of the scaled Fisher information J π of [23] defined in 1.1. 3. Again in the case of a single summand S = Y 1 ∼ C Q R, we have that r 1 s; P, Q ≡ 0 if and only if R = R, i.e., if and only if R is the Poλ distribution. Thus in this case J Q,1 S = 0 if and only if S ∼ CPoλ,Q for some λ 0. 4. In general, writing F i for the distribution of the leave-one-out sum P j 6=i Y i , r 1 ·; P, Q ≡ 0 ⇐⇒ X p i F i ∗ C Q i R i − C Q i R i ≡ 0. Hence within the class of ultra log-concave R i a class which includes compound Bernoulli sums, since the moments of R i are no smaller than the moments of R i with equality if and only if R i is Poisson, the score r 1 ·; P, Q ≡ 0 if and only if the R i are all Poisson, i.e., if and only if P is compound Poisson.

3.2 Katti-Panjer information

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52