Cherowitzo sets and algebraic curves

188 C. M. O’Keefe — J. A. Thas 4 Collineations of Cherowitzo hyperovals and sets For this section, we suppose that q = 2 h where h ≥ 5 is odd. Let σ ∈ AutGFq be such that σ 2 ≡ 2 mod q − 1, and define a Cherowitzo set to be the set of points H = {1, t, ft : t ∈ GFq} ∪ {0, 1, 0, 0, 0, 1} where ft = t σ + t σ+2 + t 3σ+4 . For 5 ≤ h ≤ 15, a Cherowitzo set is a Cherowitzo hyperoval [4]. In the following we write h = 2e + 1, so that σ = 2 e+1 . Taking account of [10], we only need consider h ≥ 7, that is, e ≥ 3.

4.1 Cherowitzo sets and algebraic curves

In homogeneous coordinates x, y, z, the point 1, t, ft satisfies the equation F x, y, z = 0, with F x, y, z = x 3σ+3 z + x 2σ+4 y σ + x 2σ+2 y σ+2 + y 3σ+4 . We define the algebraic curves C = V F in PG2, q and b C = V F in PG2, γ where γ is the algebraic closure of GFq. Lemma 18 In PG2, q, we have C ∪ {0, 1, 0} = H. Proof: First, C and H coincide on the set of points x, y, z, x 6= 0. Further, the line x = 0 meets C in the unique point 0, 0, 1 and meets H in the points 0, 1, 0, 0, 0, 1. Lemma 19 The curve b C has a unique multiple point 0, 0, 1 of multiplicity 3σ + 3. The line x = 0 is the unique tangent to b C at 0, 0, 1. Further, each tangent to b C passes through the point 0, 1, 0. Proof: The multiple points of b C are the solutions of the following system of equa- tions: F x, y, z = 0, F x x, y, z = x 3σ+2 z = 0, F z x, y, z = x 3σ+3 = 0, noting that F y x, y, z = 0. The only solution is x = y = 0, and we have found the multiple point 0, 0, 1, of multiplicity 3σ + 3. The tangent x = 0 to b C at 0, 0, 1 has multiplicity 3σ + 3 and passes through 0, 1, 0. The tangent to b C at the point x , y , z is the line with equation x 3σ+2 z x + x 3σ+3 z = 0, which passes through 0, 1, 0. Lemma 20 The curve C is absolutely irreducible. Collineations of Subiaco and Cherowitzo hyperovals 189 Proof: Since b C has a unique singular point, each irreducible factor of F over γ has multiplicity one. Suppose that b C has irreducible components C 1 , . . . , C r , r 1, with degC i = n i . Since b C has order 3σ + 4 and 0, 0, 1 is a point of multiplicity 3σ + 3, it follows that 0, 0, 1 has multiplicity n i for r − 1 of these irreducible components, say C 1 , . . . , C r−1 for C i has a point of multiplicity m i at 0, 0, 1, where n i ≥ m i , n 1 +. . .+n r = 3σ + 4 and m 1 +. . .+m r = 3σ +3. Since C i is irreducible, each of the curves C 1 , . . . , C r−1 is a line through 0, 0, 1, necessarily coinciding with the unique tangent x = 0 to b C at 0, 0, 1. But x = 0 is not a component of b C; a contradiction.

4.2 Collineations of Cherowitzo sets

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52