Subiaco hyperovals and algebraic curves

Collineations of Subiaco and Cherowitzo hyperovals 181 for some polynomials F, G, F ′ , G ′ . Now a point X, Y lies in C ∩ C ′ if and only if the following equations are satisfied: XF X, Y + Y s GY = 0, Y s [Y t−s G ′ Y F X, Y − GY F ′ X, Y ] = 0, implying that the multiplicity of intersection of C and C ′ at 0, 0 is at least s. 3 Collineations of Subiaco hyperovals Suppose for this section that q 64 and that h 6≡ 2 mod 4. Recall that there is a projectively unique Subiaco hyperoval in PG2, q, which can be written as H = {1, t, ft : t ∈ GFq} ∪ {0, 1, 0, 0, 0, 1} where ft = d 2 t 4 + d 2 1 + d + d 2 t 3 + d 2 1 + d + d 2 t 2 + d 2 t t 2 + dt + 1 2 + t 12 and d ∈ GFq satisfies trace1d = 1 and d 2 + d + 1 6= 0.

3.1 Subiaco hyperovals and algebraic curves

In this section we find an algebraic plane curve which coincides with H as a set of points in PG2, q, and investigate some of its properties. In non-homogeneous coordinates Y, Z, a point t, ft of the Subiaco hyperoval H satisfies the equation Z = d 2 Y 4 + d 2 1 + d + d 2 Y 3 + Y 2 + d 2 Y Y 2 + dY + 1 2 + Y 12 ⇔ Z 2 = d 4 Y 8 + d 4 1 + d 2 + d 4 Y 6 + Y 4 + d 4 Y 2 Y 2 + dY + 1 4 + Y ; so in homogeneous coordinates x, y, z the point 1, t, ft of H satisfies z 2 + xyx 2 + dxy + y 2 4 + d 4 x 2 y 8 + x 8 y 2 + d 4 1 + d 2 + d 4 x 4 y 6 + x 6 y 4 = 0. We denote this last equation by F x, y, z = 0, noting that F is a homogeneous polynomial of degree 10 in the variables x, y, z, and define an algebraic curve C in PG2, q by C = V F = {x, y, z : F x, y, z = 0}. Lemma 5 The curve C and the hyperoval H coincide as sets of points in PG2, q. Proof: It is clear that H and C coincide on the set of points x, y, z, x 6= 0, so we only need to check that C and H coincide on the set of points 0, y, z. Now F 0, y, z = z 2 y 8 = 0 if and only if either y = 0 or z = 0, hence H and C only contain the points 0, 1, 0, 0, 0, 1 among the points 0, y, z. 182 C. M. O’Keefe — J. A. Thas In the following, let γ be the algebraic closure of GFq and let b C = V F denote the algebraic curve of degree 10 in PG2, γ. Lemma 6 The curve b C has a unique multiple point 0, 0, 1 of multiplicity 8 and the two linear factors of x 2 + dxy + y 2 = 0 conjugate in a quadratic extension of GFq are the equations of the tangents to b C at 0, 0, 1 each with multiplicity 4. Proof: The multiple points of b C are determined by the solutions of the following system of equations: F x, y, z = 0, F x x, y, z = yx 8 + d 4 x 4 y 4 + y 8 = 0, F y x, y, z = xx 8 + d 4 x 4 y 4 + y 8 = 0, F z x, y, z = 0. Now x = 0 ⇔ y = 0 and we have found the multiple point 0, 0, 1, of multiplicity 8. The factors of x 2 + dxy + y 2 4 = 0 determine the eight tangents to b C at 0, 0, 1. If x 6= 0 and y 6= 0 then x 2 + dxy + y 2 = 0. Further, F x, y, z = 0 ⇔ d 4 x 2 y 8 + x 8 y 2 + d 4 1 + d 2 + d 4 x 4 y 6 + x 6 y 4 = 0 ⇔ d 2 xy 4 + x 4 y + d 2 1 + d + d 2 x 2 y 3 + x 3 y 2 = 0 ⇔ d 2 xy y 3 + x 3 + 1 + d + d 2 xy 2 + x 2 y = 0 ⇔ d 2 xy yy 2 + dxy + x 2 + xy 2 + dxy + x 2 + d 2 xyx + y = 0 ⇔ d 4 x 2 y 2 x + y = 0 ⇔ x = y. Substituting x = y into the equation x 2 + dxy + y 2 = 0 implies that dxy = 0, which is impossible. Lemma 7 The curve C is absolutely irreducible. Proof: If one of the two tangents to C at 0, 0, 1 is a component of b C, then so is the other tangent, and in this case x 2 + dxy + y 2 must be a factor of F x, y, z. Hence x 2 + dxy + y 2 divides d 4 x 2 y 8 + x 8 y 2 + d 4 1 + d 2 + d 4 x 4 y 6 + x 6 y 4 , so divides y 6 + x 6 + 1 + d 2 + d 4 x 2 y 4 + x 4 y 2 = x 2 x 4 + d 2 x 2 y 2 + y 4 + y 2 y 4 + d 2 x 2 y 2 + x 4 + d 4 x 2 y 4 + x 4 y 2 , so divides d 4 x 2 y 2 x 2 + y 2 , so divides x 2 + y 2 , so divides dxy, a contradiction. Thus neither tangent to C at 0, 0, 1 is a component of b C. As b C has a unique singular point, each irreducible factor of F over γ has mul- tiplicity 1. Suppose that the irreducible components of b C are C 1 , . . . , C r , for some r 1, where degC i = n i and C i has multiplicity m i at 0, 0, 1. If, for some i, we have m i = n i then m i = n i = 1 and the component C i is a line, which must therefore be a tangent to C i , and hence to C, at 0, 0, 1. This possibility has al- ready been ruled out. Since n 1 + . . . + n r = 10 and m 1 + . . . + m r = 8, with n i m i ≥ 0 for all i, the only possibility is that r = 2 and, without loss of general- ity, n 1 , n 2 = 1, 9, 2, 8, 3, 7, 4, 6 or 5, 5 and in each case m i = n i − 1. As 0, 0, 1 is the only singular point of b C, it is the unique common point of C 1 and C 2 . In particular, 0, 0, 1 is a point of each of C 1 and C 2 . Hence n 1 , n 2 is different from 1, 9, as otherwise m 1 = n 1 − 1 = 0. Collineations of Subiaco and Cherowitzo hyperovals 183 If C 1 and C 2 are defined over GFq, and since any tangent to C i at 0, 0, 1 is a tangent to C and is therefore not a line of PG2, q, it follows that any line of PG2, q on 0, 0, 1 meets C i in a further point of PG2, q. Then |C 1 ∪ C 2 | = 2q + 1 + 1 q + 2 = |C|, a contradiction. Thus C 1 and C 2 are not defined over GFq, but over some extension GFq s , for some s 1. Let σ be a non-identity element of the Galois group GalGFq s GFq. Then C σ 1 = C 2 , which implies that n 1 = n 2 = 5. By [6], Lemma 10.1.1, |C i | ≤ 5 2 , so |C| ≤ 225 − 1 = 49. We have already shown that |C| = q + 2 and q 64, so the contradiction proves the result. Lemma 8 If q 64 then PΓL3, q H ≤ PΓL3, q b C . Proof: Let θ ∈ PΓL3, q H . Since H θ = H and C = H as sets of points in PG2, q, we know that H = C θ . Suppose, aiming for a contradiction, that b C θ 6= b C. Since H ⊆ b C θ ∩ b C, and taking account of multiplicities, we see that X P ∈ b C θ ∩ b C m P b C θ m P b C ≥ q + 16. By Result 3 and since C and C θ are both absolutely irreducible, if b C θ 6= b C then q + 16 ≤ 100, implying that q ≤ 64. We conclude that b C θ = b C so that θ ∈ PΓL3, q b C . Lemma 9 Let θ ∈ PΓL3, q H . Then θ fixes the point 0, 0, 1 and fixes the set of lines in a quadratic extension of PG2, q determined by the equation x 2 + dxy + y 2 = 0. Proof: First, θ ∈ PΓL3, q H ≤ PΓL3, q b C , by Lemma 8. Since 0, 0, 1 is the unique point of multiplicity greater than 1 on b C, it must be fixed by θ see Result 2. So the pair of tangents to C at 0, 0, 1 is also fixed by θ.

3.2 The case

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52