Abstract formulation getdoc2a9c. 249KB Jun 04 2011 12:04:12 AM

Here, b K ∗ t ω := { y ∈ R d : P i≤d x i y i ≥ 0 ∀ x ∈ b K t ω} is the positive polar of b K t ω. In the following, we shall denote by Z s the set of processes satisfying the above conditions. We refer to [5] and [23] for a discussion on the link between the existence of these so-called strictly consistent price processes and the absence of arbitrage opportunities, see also Section 3. The rest of this paper is organized as follows. In Section 2, we first state an abstract version of our main duality result in terms of a suitable set D of dual processes. We then provide a more precise description of the set D which allows us to state our duality result in a form which is more in the spirit of [9, Theorem 4.2]. In Section 3, we also discuss this result in the light of the literature on optimal stopping and American options pricing in frictionless markets. Section 4 presents the extension of Meyer’s result. In Section 5, we prove the super-hedging theorem using the strong duality approach explained above. Notations: From now on, we shall use the notation x y to denote the natural scalar product on R d . For a làdlàg optional process X , we define kX k ∗ := sup t≤T kX t k. Given a process with bounded variations A, we write A c and A δ to denote its continuous and purely discontinuous parts, and by ˙ A its density with respect to the associated total variation process VarA := Var t A t≤T . The integral with respect to A has to be understood as the sum of the integrals with respect to A c and A δ . Given a làdlàg measurable process X on [0, T ], we shall always use the conventions X T + = X T and X 0− = 0. 2 Main results

2.1 Abstract formulation

Our dual formulation is based on the representation of continuous linear form on S 1 Q in terms of elements of the set R of R 3d -valued adapted càdlàg processes A := A − , A ◦ , A + with P-integrable total variation such that: i A − is predictable, ii A + and A − are pure jump processes, iii A − = 0 and A + T = A + T − . Letting S ∞ denote the collection of elements of S 1 Q with essentially bounded supremum, we have: Proposition 2.1. Fix Q ∼ P and let µ be a continuous linear form on S 1 Q. Then, there exists A := A − , A ◦ , A + ∈ R such that: µX = X |A] := E   Z T X t− dA − t + Z T X t dA ◦ t + Z T X t+ dA + t   , ∀ X ∈ S ∞ . Note that such a result is known from [1] or [21] in the case of càdlàg or làdcàg 6 processes, the one dimensional làdlàg case being mentioned in [10]. A complete proof will be provided in Section 4 below. 6 The French acronym làdcàg , limité à droite continu à gauche, means “left continuous with right limits”. 616 To obtain the required dual formulation of b C , we then consider a particular subset D ⊂ R of dual processes that takes into account the special structure of b C : Definition 2.1. Let D denote the set of elements A ∈ R such that C1 b C|A] ≤ 0, for all b C ∈ S ∞ satisfying 0 b C. C2 b V |A] ≤ 0, for all b V ∈ b V with essentially bounded total variation. A more precise description of the set D will be given in Lemma 2.1 and Lemma 2.2 below. In particular, it will enable us to extend the linear form ·|A], with A ∈ D, to elements of b C b := b C ∩S b where S b denotes the set of làdlàg optional processes X satisfying X a for some a ∈ R d . This extension combined with a Hahn-Banach type argument, based on the key closure property of Proposition 5.1 below, leads to a natural polarity relation between D and b C b . Here, given a subset E of S b , we define its polar as E ⋄ := {A ∈ R : X |A] ≤ 0 for all X ∈ E} , and define similarly the polar of a subset F of R as F ⋄ := X ∈ S b : X |A] ≤ 0 for all A ∈ F , where we use the convention X |A] = ∞ whenever R T X t− dA − t + R T X t dA ◦ t + R T X t+ dA + t is not P- integrable. Our main result reads as follows: Theorem 2.1. D ⋄ = b C b and b C b ⋄ = D. The first statement provides a dual formulation for the set b C b of super-hedgeable American claims that are “bounded from below”. The second statement shows that D is actually exactly the polar of b C b for the relation defined above. Remark 2.1. Given b C ∈ S b , let Γ b C denote the set of initial portfolio holdings v such that b C ∈ b C v . It follows from the above theorem and the identity b C v = v + b C that Γ b C = ¦ v ∈ R d : b C − v|A] ≤ 0 for all A ∈ D © . If the asset one is chosen as a numéraire, then the corresponding super-hedging price is given by p b C := inf ¦ v 1 ∈ R : v 1 , 0, · · · , 0 ∈ Γ b C © . We shall continue this discussion in Remark 2.2 below.

2.2 Description of the set of dual processes D

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52