Description of the set of dual processes D

To obtain the required dual formulation of b C , we then consider a particular subset D ⊂ R of dual processes that takes into account the special structure of b C : Definition 2.1. Let D denote the set of elements A ∈ R such that C1 b C|A] ≤ 0, for all b C ∈ S ∞ satisfying 0 b C. C2 b V |A] ≤ 0, for all b V ∈ b V with essentially bounded total variation. A more precise description of the set D will be given in Lemma 2.1 and Lemma 2.2 below. In particular, it will enable us to extend the linear form ·|A], with A ∈ D, to elements of b C b := b C ∩S b where S b denotes the set of làdlàg optional processes X satisfying X a for some a ∈ R d . This extension combined with a Hahn-Banach type argument, based on the key closure property of Proposition 5.1 below, leads to a natural polarity relation between D and b C b . Here, given a subset E of S b , we define its polar as E ⋄ := {A ∈ R : X |A] ≤ 0 for all X ∈ E} , and define similarly the polar of a subset F of R as F ⋄ := X ∈ S b : X |A] ≤ 0 for all A ∈ F , where we use the convention X |A] = ∞ whenever R T X t− dA − t + R T X t dA ◦ t + R T X t+ dA + t is not P- integrable. Our main result reads as follows: Theorem 2.1. D ⋄ = b C b and b C b ⋄ = D. The first statement provides a dual formulation for the set b C b of super-hedgeable American claims that are “bounded from below”. The second statement shows that D is actually exactly the polar of b C b for the relation defined above. Remark 2.1. Given b C ∈ S b , let Γ b C denote the set of initial portfolio holdings v such that b C ∈ b C v . It follows from the above theorem and the identity b C v = v + b C that Γ b C = ¦ v ∈ R d : b C − v|A] ≤ 0 for all A ∈ D © . If the asset one is chosen as a numéraire, then the corresponding super-hedging price is given by p b C := inf ¦ v 1 ∈ R : v 1 , 0, · · · , 0 ∈ Γ b C © . We shall continue this discussion in Remark 2.2 below.

2.2 Description of the set of dual processes D

In this section, we provide a more precise description of the set of dual processes D. The proofs of the above technical results are postponed to the Appendix. Our first result concerns the property C1. It is the counterpart of the well-known one dimensional property: if µ admits the representation µX = X |A] and satisfies µX ≤ 0 for all non-positive process X with essentially bounded supremum, then A has non-decreasing components. In our context, where the notion of non-positivity is replaced by 0 b C , it has to be expressed in terms of the positive polar sets process b K ∗ of b K . 617 Lemma 2.1. Fix A := A − , A ◦ , A + ∈ R. Then C1 holds if and only if i ˙ A − ∈ b K ∗ − d VarA − ⊗ P-a.e., ii ˙ A ◦c ∈ b K ∗ d VarA ◦c ⊗ P-a.e. and ˙ A ◦δ ∈ b K ∗ d VarA ◦δ ⊗ P-a.e., iii ˙ A + ∈ b K ∗ d VarA + ⊗ P-a.e. In the following, we shall denote by R ˆ K the subset of elements A ∈ R satisfying the above conditions i-iii. We now discuss the implications of the constraint C2. From now on, given A := A − , A ◦ , A + ∈ R, we shall denote by ¯ A − resp. ¯ A + the predictable projection resp. optional of δA − t t≤T resp. δA + t t≤T , where δA − t := A − T − A − t + A ◦ T − A ◦ t− + A + T − A + t− and δA + t := A − T − A − t + A ◦ T − A ◦ t + A + T − A + t− . Lemma 2.2. Fix A := A − , A ◦ , A + ∈ R. Then C2 holds if and only if i ¯ A − τ ∈ b K ∗ τ− P − a.s. for all predictable stopping times τ ≤ T , ii ¯ A + τ ∈ b K ∗ τ P − a.s. for all stopping times τ ≤ T . In the following, we shall denote by R ∆ ˆ K the subset of elements A ∈ R satisfying the above condi- tions i-ii. Note that combining the above Lemmas leads to the following precise description of D: Corollary 2.1. D = R ˆ K ∩ R ∆ ˆ K . Remark 2.2. Since b K ⊃ [ 0, ∞ d , recall 1.2, it follows that b K ∗ ⊂ [0, ∞ d . The fact that π i j t e i − e j ∈ b K t and π i j t 0 for all i, j ≤ d thus implies that y 1 = 0 ⇒ y = 0 for all y ∈ b K ∗ t ω. It then follows from Lemma 2.1 that for A ∈ D, e 1 |A] ≥ 0 and e 1 |A] = 0 ⇒ X |A] = 0 for all X ∈ S b . In view of Remark 2.1, this shows that p b C = sup B∈D 1 b C|B] for all b C ∈ S b , where D 1 := {B = Ae 1 , A], A ∈ D s.t. e 1 , A] 0} ∪ {0} .

2.3 Alternative formulation

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52