The Analogue of Theorem 2.1 for X

and let X t be the diffusion associated with L in {ρ, z: ρ 0}. Then by symmetry, for x = ρ, z, θ , P x |Bτ Ω | N = P y |X τ D | N, y = ρ, z. Thus to prove Theorem 1.6, it suffices to show lim N →∞   Z N 1 d t at   −1 log P y |X τ D | N = − π 2 . Using the relation Z x 1 N 1 d t at ∼ Z N 1 d t at as N → ∞ derived in the proof of Theorem 1.2, we see the proof of Theorem 1.6 comes down to showing lim N →∞   Z x 1 N 1 d t at   −1 log P y |X τ D | N = − π 2 . 27

3.1 The Analogue of Theorem 2.1 for X

X X Since n ≥ 2, starting at ρ, z with ρ 0, the process X t stays in {ρ, z: ρ 0} forever. In fact, the first component of X t is an n-dimensional Bessel process and the second component is an independent one-dimensional Brownian motion. Thus the transition density pt, y, w of X t with respect to Lebesgue measure is the product of the transition densities of the components: for y = y 1 , y 2 and w = w 1 , w 2 , pt, y, w = e −w 2 1 + y 2 1 2t t y 1 w 1 n 2 −1 w n −1 1 I n 2 −1  y 1 w 1 t ‹ 1 p 2 πt e − y 2 −w 2 2 2t , 28 where I ν z =  z 2 ‹ ν ∞ X k=0 z 2 2k kΓ ν + k + 1 is the modified Bessel function see Ikeda and Watanabe 1981 for the transition density of the Bessel process. Lemma 3.1. The operator L is subcritical on {ρ, z: ρ 0}; equivalently, X t is transient in {ρ, z: ρ 0} and has a Green function G there. In fact, for y = y 1 , y 2 and w = w 1 , w 2 , G y, w = K n w n −1 1 [ y 2 1 + w 2 1 + y 2 − w 2 2 ] −n−12 F n − 1 4 , n + 1 4 ; n 2 ; ‚ 2 y 1 w 1 y 2 1 + w 2 1 + y 2 − w 2 2 Œ 2 , where K n = π −1 2 n−32 Γ n −1 4 Γ n+1 4 Γ n 2 and F a, b; c; z = Γc ΓaΓb ∞ X k=0 Γa + kΓb + k Γc + k z k k is the hypergeometric function with interval of convergence −1, 1. 2676 Proof. Writing β = y 2 1 + w 2 1 + y 2 − w 2 2 2 and changing variables u = βt, we have G y, w = Z ∞ pt, y, wd t = w n 2 1 y 1 −n2 1 p 2 π Z ∞ t −32 e −βt I n 2 −1  y 1 w 1 t ‹ d t = w n 2 1 y 1 −n2 1 p 2 π β −12 Z ∞ u −12 e −u I n 2 −1 y 1 w 1 β u du = w n 2 1 y 1 −n2 1 p 2 π β −12 ∞ X k=0 Z ∞ u −12 e −u kΓ n 2 + k y 1 w 1 2 β u n 2 −1+2k du = w n −1 1 2 1−n2 p π β 1−n2 ∞ X k=0 Γ n 2 + 2k − 1 2 Γ n 2 + k 1 k y 1 w 1 2 β 2k . Using the identity Γ2z = 1 p 2 π 2 2z − 1 2 ΓzΓ z + 1 2 Abramowitz and Stegun 1972, 6.1.18, we get G y, w = 1 2 π w n −1 1 β −n−12 ∞ X k=0 Γ n 4 + k − 1 4 Γ n 4 + k + 1 4 kΓ n 2 + k y 1 w 1 β 2k = 1 2 π w n −1 1 β −n−12 Γ n −1 4 Γ n+1 4 Γ n 2 F ‚ n − 1 4 , n + 1 4 ; n 2 ; y 1 w 1 β 2 Œ . Upon substituting for β, we get the desired expression. Since D ⊆ {ρ, z: ρ 0}, by Lemma 3.1 L, D is subcritical and the corresponding Green func- tion G D is associated with X t killed upon exiting D. Because L is not self-adjoint with respect to Lebesgue measure, the analogue of Theorem 2.1 takes on a slightly different form. We h-transform L, converting it into a self-adjoint operator that is easier to analyze. Here, if h ∈ C 2, α D is positive, then the h-transform of L is the operator L h given by L h f = 1 h Lh f . We will take h ρ, z = ρ −p , p = n − 1 2 . 29 Then L h = 1 2 – ∂ 2 ∂ ρ 2 + ∂ 2 ∂ z 2 − pp − 1 ρ 2 ™ . 2677 Since L, D is subcritical, so is L h , D Pinsky 1995 Proposition 4.2.2 and its Green function is G h D y, w = G D y, whwh y. 30 Now we can state the analogue of Theorem 2.1. Theorem 3.2. For any Borel set A ⊆ ∂ D P y X τ D ∈ A = 1 2 Z A h y hw ∂ ∂ n w G h D y, w σd w, y ∈ D. ƒ Before proving this theorem, we show how it yields 27, hence Theorem 1.6. Indeed, Theorem 3.2 implies P y |X τ D | N = 1 2 h y Z |w|≥N 1 hw ∂ ∂ n w G h D y, w σd w. Fix y ∈ D and let M | y|, δ ∈ 0, j ν . Since at t → 0 as t → ∞, the function Hρ, z = − pp −1 ρ 2 satisfies the hypotheses of Theorem 2.2 on D M ; below in 42 we show that G h D y, w → 0 as w 1 → ∞. Thus for uw = G h D y, w, w ∈ D M , ∆ R 2 + Hu = 2L h G h D y, · = 0 on D M and so we can apply Theorem 2.2. Then we can repeat the proof of Theorem 1.2 almost word-for- word to end up with the analogue of 12, except that now d = 2 and the upper and lower bounds have an extra factor of x 1 N −p —this is due to the extra factor 1 hw = w −p 1 in the integrand of the expression above for P y |X τ D | N. The rest of the argument after 12 still goes through because lim N →∞ log x 1 N R x 1 N M d t at = lim K →∞ log K R K M d t at = lim K →∞ aK K = 0. 3.2 Proof of Theorem 3.2

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52