Proof of 20 getdoceafe. 252KB Jun 04 2011 12:05:08 AM

break up the surface integral over ∂ E into the pieces ∂ B ǫ x, {x 1 M } ∩ ∂ D and D ∩ π M to end up with Z {x 1 M }∩∂ D =      − Z D ∩π M + Z ∂ B ǫ x      ¨ u y – ∂ ∂ n y G D x, y ™ − G D x, y ∂ u ∂ n y y « σd y 18 where now the ∂ ∂ n y in the ∂ B ǫ x integral is inward normal differentiation for B ǫ x. Now u = f on ∂ D, supp f ⊆ B M 0 ∩ B ǫ x c and G D x, · = 0 on ∂ D, so we have Z ∂ D f y – ∂ ∂ n y G D x, y ™ σd y = Z {x 1 M }∩∂ D ¨ u y – ∂ ∂ n y G D x, y ™ − G D x, y ∂ u ∂ n y y « σd y =      − Z D ∩π M + Z ∂ B ǫ x      {}, by 18. 19 Once we prove lim M →∞ Z D ∩π M ¨ u y – ∂ ∂ n y G D x, y ™ − G D x, y ∂ u ∂ n y y « σd y = 0 20 and lim ǫ→0 Z ∂ B ǫ x ¨ u y – ∂ ∂ n y G D x, y ™ − G D x, y ∂ u ∂ n y y « σd y = 2ux, 21 we can let M → ∞ and ǫ → 0 in 19 to get ux = 1 2 Z ∂ D f y – ∂ ∂ n y G D x, y ™ σd y, which is exactly 13, as desired. Formulas 20–21 will be proved in the next two subsections.

2.3 Proof of 20

The following result is a consequence of the proof of Lemma 6.5 in Gilbarg and Trudinger 1983 combined with the comments subsequent to the proof. Lemma 2.5. Let Ω be a domain in R d with a C 2, α boundary portion T . Suppose u ∈ C 2, α Ω ∪ T is a solution of ∆ R d + Hu = 0 on Ω u = 0 on T, 2670 where Λ := |H| 0, α;Ω = sup Ω |H| + sup x, y ∈Ω x 6= y |Hx − H y| |x − y| α ∞. Then for any z ∈ T there is δ 0 such that for Bz = B δ z ∩ Ω and T z = B δ z ∩ T we have sup {dx, ∂ Bz − T z|∇ux|: x ∈ Bz ∪ T z} ≤ C sup Bz |u|. Here δ depends only on the diameter of the domain of the C 2, α diffeomorphism ψ that straightens the boundary near z and C depends only on d, α, Λ and the C 2, α bounds on ψ. ƒ We now apply Lemma 2.5. Lemma 2.6. Suppose b : D → R is bounded with sup M ≥1 aM α+2 sup |bz − b y| |z − y| α : z, y ∈ D; z 6= y; z 1 , y 1 ∈ M − aM, M + aM ∞, sup M ≥1 aM 2 sup {|bz|: z ∈ D, z 1 ∈ M − aM, M + aM} ∞. If v ∈ C 2, α D \{x} is a solution of ∆ + bv = 0 on D \{x} with v = 0 on ∂ D outside a compact set, then for large M , |∇vz| ≤ C aM −1 sup {|v y|: y ∈ D, y 1 ∈ M − aM, M + aM}, z ∈ D ∩ π M . Proof. Define γ M t = at aM + M aM , t ≥ 1 2 − M aM . Then for H M = z 1 , ˜ z: z 1 1 2 − M aM , |˜z| γ M z 1 we have    z ∈ H M ⇔ aMz + M x ∈ D z ∈ H M ∩ {−1 z 1 1} ⇔ aMz + M x ∈ D ∩ { y 1 , ˜ y: M − aM y 1 M + aM } z ∈ ∂ H M ∩ {−1 z 1 1} ⇔ aMz + M x ∈ ∂ D ∩ { y 1 , ˜ y: M − aM y 1 M + aM }. 22 2671 Notice H M is obtained from D via translating by −M x and then scaling by 1 aM . For any function g on D, we define g M z = gaM z + M x , z ∈ H M . Then for L M = ∆ + aM 2 b M we have L M v M = 0 on H M \ x − M x aM . Since aM M → 0 as M → ∞, for large M we have x 1 M − aM. Thus for large M , L M v M = 0 on H M ∩ {−1 z 1 1}. Since v ∈ C 2, α D\{x} and v = 0 on ∂ D outside a compact set, by making M larger if necessary, we have that v M ∈ C 2, α H M ∩ {−1 ≤ z 1 ≤ 1} v M = 0 on ∂ H M ∩ {−1 ≤ z 1 ≤ 1}. We are going to apply Lemma 2.5 to L M and v M on Ω = H M ∩ {−1 z 1 1} T = ∂ H M ∩ {−1 z 1 1}. This is legitimate because by our hypotheses on b, there exists Λ 0 such that for large M , |aM 2 b M | 0, α;Ω ≤ Λ. 23 By symmetry, compactness and our Blanket Assumptions on a ·, for each z ∈ ∂ H M ∩{− 1 2 ≤ z 1 ≤ 1 2 }, the C 2, α bounds on the diffeomorphism straightening the boundary near z are independent of z and large M . Roughly speaking, for large M , the set H M ∩ {−1 z 1 1} looks like the set {z 1 , ˜ z: − 1 z 1 1, |˜z| 1}. Combined with 23, it follows that the constant C appearing in Lemma 2.5 is independent of such z and large M . Likewise, the δ in the lemma is also independent of z and large M . The net effect is that for some δ 0 and C 0, for Bz = B δ z ∩ Ω T z = B δ z ∩ ∂ Ω, we have sup y ∈Bz∪T z d y, ∂ Bz − T z|∇v M y| ≤ C sup Bz |v M | ≤ C sup Ω |v M | 24 whenever z ∈ ∂ H M ∩ {− 1 2 ≤ z 1 ≤ 1 2 } and M is large. 2672 In particular, given y ∈ π ∩ H M ∩ {| ˜y| 1 − δ 2 }, choose z ∈ π ∩ ∂ H M such that d y, π ∩ ∂ H M = d y, z. Then y ∈ B δ z and by 24, for M large, |∇v M y| ≤ C d y, ∂ Bz − T z −1 sup Ω |v M |. Since y ∈ π , d y, ∂ Bz − T z ≥ δ 2 and we get that for some C 1 0, for large M , |∇v M y| ≤ C 1 δ −1 sup Ω |v M |, y ∈ π ∩ H M ∩ | ˜y| ≥ 1 − δ 2 . 25 On the other hand, by the Schauder interior estimates Gilbarg and Trudinger 1983, Theorem 6.2, sup Ω d y, ∂ Ω|∇v M y| ≤ C 2 sup Ω |v M |, where C 2 0 is independent of large M . Combined with 25, we get that for some C 0, for all large M , |∇v M y| ≤ Cδ −1 sup Ω |v M |, y ∈ π ∩ H M . Converting back to v and using 22, for all large M we have |aM∇vaM y + M x | ≤ Cδ −1 sup z ∈Ω |vaMz + M x |, aM y + M x ∈ D ∩ π M , which is to say |∇vz| ≤ Cδ −1 aM −1 sup {|vw|: w ∈ D, w 1 ∈ M − aM, M + aM}, z ∈ D ∩ π M , as desired. Now we can prove 20. Taking b = 0 in Lemma 2.6, v = u or G D x, · satisfies the required hypotheses, so for some C 0, for all large M , ∂ u ∂ n y y ≤ C aM −1 sup |u|, y ∈ π M ∩ D ∂ ∂ n y G D x, y ≤ C aM −1 sup {G D x, z: z ∈ D, M − aM z 1 M + aM }, y ∈ π M ∩ D, where ∂ ∂ n y is inward normal differentiation at the boundary part π M ∩ D of D ∩ {z 1 M }. But it is well-known that |G D x, y| ≤ C|x − y| 2 −d , and since aM M → 0 as M → ∞, it follows that for large M , ∂ ∂ n y G D x, y ≤ C aM −1 M 2 −d , y ∈ π M ∩ D. Since u is bounded, we end up with u y ∂ ∂ n y G D x, y − G D x, y ∂ u ∂ n y y ≤ C aM −1 M 2 −d , y ∈ π M ∩ D, 2673 for all large M . Hence as M → ∞ Z D ∩π M ¨ u y ∂ ∂ n y G D x, y − G D x, y ∂ u ∂ n y y « σd y ≤ C aM −1 M 2 −d aM d −1 = C aM M d −2 → 0, as desired. ƒ

2.4 Proof of 21

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52