First example: monotone Gaussian functional, finite case. Second example: monotone Gaussian functional, continuous case.

Corollary 3.8. Let the assumptions of Theorem 3.1 prevail. Let Φ Z : R H → H be measurable and such that DZ = Φ Z X . Then, for almost all z in supp ρ, the density ρ of the law of Z is given by ρz = E|Z| 2 R ∞ e −u E 〈Φ Z X , Φ Z e −u X + p 1 − e −2u X ′ 〉 H |Z = z du × exp   − Z z x d x R ∞ e −v E 〈Φ Z X , Φ Z e −v X + p 1 − e −2v X ′ 〉 H |Z = x d v    . Now, we give several examples of application of this corollary.

3.2.1 First example: monotone Gaussian functional, finite case.

Let N ∼ N n 0, K with K positive definite, and f : R n → R be a C 1 function having bounded derivatives. Consider an isonormal Gaussian process X over the Euclidean space H = R n , endowed with the inner product 〈h i , h j 〉 H = EN i N j = K i j . Here, {h i } 1¶i¶n stands for the canonical basis of H = R n . Without loss of generality, we can identify N i with X h i for any i = 1, . . . , n. Set Z = f N −E f N . The chain rule 2.10 implies that Z ∈ D 1,2 and that DZ = Φ Z N = P n i=1 ∂ f ∂ x i N h i . Therefore 〈Φ Z X , Φ Z e −u X + p 1 − e −2u X ′ 〉 H = n X i, j=1 K i j ∂ f ∂ x i N ∂ f ∂ x j e −u N + p 1 − e −2u N ′ , for N ′ i = X ′ h i , i = 1, . . . , n. In particular, Corollary 3.5 combined with Proposition 3.7 yields the following. Proposition 3.9. Let N ∼ N n 0, K with K positive definite, and f : R n → R be a C 1 function with bounded derivatives. If there exist α i , β i ¾ 0 such that α i ¶ ∂ f ∂ x i x ¶ β i for any i ∈ {1, . . . , n} and x ∈ R n , if K i j ¾ 0 for any i, j ∈ {1, . . . , n} and if P n i, j=1 α i α j K i j 0, then the law of Z = f N − E f N admits a density ρ which satisfies, for almost all z ∈ R, E|Z| 2 P n i, j=1 β i β j K i j exp − z 2 2 P n i, j=1 α i α j K i j ¶ ρz ¶ E|Z| 2 P n i, j=1 α i α j K i j exp − z 2 2 P n i, j=1 β i β j K i j .

3.2.2 Second example: monotone Gaussian functional, continuous case.

Assume that X = X t , t ∈ [0, T ] is a centered Gaussian process with continuous paths, and that f : R → R is C 1 with a bounded derivative. The Gaussian space generated by X can be identified with an isonormal Gaussian process of the type X = {X h : h ∈ H}, where the real and separable 2298 Hilbert space H is defined as follows: i denote by E the set of all R-valued step functions on [0, T ], ii define H as the Hilbert space obtained by closing E with respect to the scalar product 〈1 [0,t] , 1 [0,s] 〉 H = EX s X t . In particular, with such a notation, we identify X t with X 1 [0,t] . Now, let Z = R T f X v d v − E R T f X v d v . Then Z ∈ D 1,2 and we have DZ = Φ Z X = R T f ′ X v 1 [0,v] d v. Therefore 〈Φ Z X , Φ Z e −u X + p 1 − e −2u X ′ 〉 H = ZZ [0,T ] 2 f ′ X v f ′ e −u X w + p 1 − e −2u X ′ w EX v X w d vd w. Using Corollary 3.5 combined with Proposition 3.7, we get the following. Proposition 3.10. Assume that X = X t , t ∈ [0, T ] is a centered Gaussian process with continuous paths, and that f : R → R is C 1 . If there exists α, β, σ min , σ max 0 such that α ¶ f ′ x ¶ β for all x ∈ R and σ 2 min ¶ EX v X w ¶ σ 2 max for all v, w ∈ [0, T ], then the law of Z = R T f X v d v − E R T f X v d v has a density ρ satisfying, for almost all z ∈ R, E|Z| 2 β 2 σ 2 max T 2 e − z2 2 α2 σ2 min T 2 ¶ ρz ¶ E|Z| 2 α 2 σ 2 min T 2 e − z2 2 β2 σ2 max T 2 .

3.2.3 Third example: maximum of a Gaussian vector.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52