Third example: maximum of a Gaussian vector.

Hilbert space H is defined as follows: i denote by E the set of all R-valued step functions on [0, T ], ii define H as the Hilbert space obtained by closing E with respect to the scalar product 〈1 [0,t] , 1 [0,s] 〉 H = EX s X t . In particular, with such a notation, we identify X t with X 1 [0,t] . Now, let Z = R T f X v d v − E R T f X v d v . Then Z ∈ D 1,2 and we have DZ = Φ Z X = R T f ′ X v 1 [0,v] d v. Therefore 〈Φ Z X , Φ Z e −u X + p 1 − e −2u X ′ 〉 H = ZZ [0,T ] 2 f ′ X v f ′ e −u X w + p 1 − e −2u X ′ w EX v X w d vd w. Using Corollary 3.5 combined with Proposition 3.7, we get the following. Proposition 3.10. Assume that X = X t , t ∈ [0, T ] is a centered Gaussian process with continuous paths, and that f : R → R is C 1 . If there exists α, β, σ min , σ max 0 such that α ¶ f ′ x ¶ β for all x ∈ R and σ 2 min ¶ EX v X w ¶ σ 2 max for all v, w ∈ [0, T ], then the law of Z = R T f X v d v − E R T f X v d v has a density ρ satisfying, for almost all z ∈ R, E|Z| 2 β 2 σ 2 max T 2 e − z2 2 α2 σ2 min T 2 ¶ ρz ¶ E|Z| 2 α 2 σ 2 min T 2 e − z2 2 β2 σ2 max T 2 .

3.2.3 Third example: maximum of a Gaussian vector.

Let N ∼ N n 0, K with K positive definite. Once again, we assume that N can be written N i = X h i , for X and h i , i = 1, . . . , n, defined as in the section 3.2.1. Since K is positive definite, note that the members h 1 , . . . , h n are necessarily different in pairs. Let Z = max N − Emax N , and set I u = argmax 1¶i¶n e −u X h i + p 1 − e −2u X ′ h i for u ¾ 0. Lemma 3.11. For any u ¾ 0, I u is a well-defined random element of {1, . . . , n}. Moreover, Z ∈ D 1,2 and we have DZ = Φ Z N = h I . Proof : Fix u ¾ 0. Since, for any i 6= j, we have P e −u X h i + p 1 − e −2u X ′ h i = e −u X h j + p 1 − e −2u X ′ h j = P X h i = X h j = 0, the random variable I u is a well-defined element of {1, . . . , n}. Now, if ∆ i denotes the set {x ∈ R n : x j ¶ x i for all j}, observe that ∂ ∂ x i maxx 1 , . . . , x n = 1 ∆ i x 1 , . . . , x n almost everywhere. The desired conclusion follows from the Lipschitz version of the chain rule 2.10, and the following Lipschitz property of the max function, which is easily proved by induction on n ¾ 1: maxy 1 , . . . , y n − maxx 1 , . . . , x n ¶ n X i=1 | y i − x i | for any x, y ∈ R n . 3.24 2299 ƒ In particular, we deduce from Lemma 3.11 that 〈Φ Z X , Φ Z e −u X + p 1 − e −2u X ′ 〉 H = K I ,I u . 3.25 so that, by Corollary 3.8, the density ρ of the law of Z is given, for almost all z in supp ρ, by: ρz = E|Z| 2 R ∞ e −u E K I ,I u |Z = z du exp  − Z z x d x R ∞ e −v E K I ,I v |Z = x d v   . As a by-product see also Corollary 3.5, we get the density estimates in the next proposition, and a variance formula. Proposition 3.12. Let N ∼ N n 0, K with K positive definite. • If there exists σ min , σ max 0 such that σ 2 min ¶ K i j ¶ σ 2 max for any i, j ∈ {1, . . . , n}, then the law of Z = max N − Emax N has a density ρ satisfying E|Z| 2 σ 2 max exp ‚ − z 2 2 σ 2 min Œ ¶ ρz ¶ E|Z| 2 σ 2 min exp ‚ − z 2 2 σ 2 max Œ for almost all z ∈ R. • With N ′ an independent copy of N and I u := argmaxe −u N + p 1 − e −2u N ′ , we have Varmax N = Z ∞ e −u E K I ,I u du. The variance formula above is a discrete analogue of formula 1.6: the reader can check that it is established identically to the proof of 1.6 found in the next section Proposition 3.13, by using formula 3.25 instead of formula 3.26 therein. It appears that this discrete-case variance formula was established recently using non-Malliavin-calculus tools in the preprint [8, Lemma 3.1].

3.2.4 Fourth example: supremum of a Gaussian process.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52