A finite number of mutants do not survive in between a double infinity of resi-

P ROOF : Choose t large enough, such that the conclusion of Proposition 3.6 holds true. It follows from that same Proposition, the Markov property and 3.2 that for all k ∈ N the distribution of η kt is P n P U 1 + · · · + U k = nT n µ where the U i ’s are i.i.d. random variables distributed as Zt . It then follows that P ‚ brη kt kt ≥ z Œ ≤ P U 1 + · · · + U k kt ≥ z for any real z. Using part c of Proposition 3.6 and standard large deviation estimates we get that for for any z E Zt t we have: X k P ‚ brη kt kt ≥ z Œ ∞. Hence, by the Borel-Cantelli lemma we get: lim sup k br η kt kt ≤ w a.s. where w is as in Proposition 3.6. Hence the result holds along the sequence kt . Finally the gaps are easy to control since for any initial configuration, the process br η t makes jumps to the right which are bounded above by a Poisson process of parameter λ. ƒ It follows readily from this result that Corollary 3.8. γ := P Z − ,{1} the type 2 population survives for ever 0. P ROOF : First suppose that the initial distribution of the process is µ and call η the initial random configuration. It then follows from Proposition 3.7 and Corollary 2.4 that for some x 0 there is an infinite open path starting at x, 0 such that for any y, t in this path we have η t y = 2. This conclusion remains true if we suppress all the initial 2’s to the right of x. The corollary then follows from the Markov property and 3.2. ƒ

3.2 A finite number of mutants do not survive in between a double infinity of resi-

dents The aim of this subsection is to prove Theorem 3.9. Consider the two type contact process { η A,B t , t ≥ 0}, where |B| ∞, and the set A contains an infinite number of points located both to the left and to the right of B, Then a. s. there exists t ∞ such that {x; η A,B s x = 2} = ;, ∀s ≥ t. Let us first prove the following weaker statement. We shall then verify that the Theorem follows from it. 403 Proposition 3.10. For any n, m ∈ N let A n,m = {x ∈ Z : x ≤ −m or x ≥ n} and B = {0}, then a. s. there exists t ∞ such that {x; η A n,m ,B s x = 2} = ;, ∀s ≥ t. P ROOF : By the Markov property and 3.2 it suffices to prove the result for n = m = 1. Indeed starting from that configuration, for any n, m 1, with positive probability we find ourselves at time one with the same unique type 2 individual located at x = 0, sites −m + 1, . . . , −1 empty, sites 1, . . . , n − 1 empty, and some of the other sites occupied by type 1 individuals. Let α t denote the number of descendants at time t of the unique initial type 2 individual hence α t denotes also the number of type 2 individuals at time t. On the event that the lineage of the unique type 2 individual survives for ever we have α t → ∞ as t → ∞ a. s. Hence if that event has positive probability, E α t → ∞ as t → ∞. Consequently for any δ 0, T δ = inf{t 0, Eα t ≥ 1 + δ} ∞. Denote by r ′ t x the supremum of the set of sites occupied by the descendants of the individual x, 0. Clearly, whatever the initial configuration is E[r ′ t x − x] ≤ E[r t ], where as above r t = sup n x : ξ Z − t x = 1 o . From the result recalled at the beginning of section 2, there exists T ′ such that E • r t t ˜ ≤ v + 1, ∀t ≥ T ′ . Recall that in our initial configuration all sites are occupied who occupies each site is irrelevant to contradict the fact that T δ ∞, which we now do. For n odd, let Z t n be the number of sites which at time t are in a line of descendance starting at time 0 in the interval [−n − 1 2, . . . , n − 12]. Now by stationarity whenever t ≥ T δ , E Z t n ≥ n1 + δ. On the other hand, if t ≥ T ′ , by symmetry, E Z t n ≤ n + 2tv + 1. Choosing n 2tv + 1δ, the last two inequalities yield a contradiction. ƒ In order to deduce Theorem 3.9 from Proposition 3.10, we shall need the following Lemma where, as above, the η t ’s for various initial conditions are defined with the same unique graphical repre- sentation. Lemma 3.11. Let x n n≥0 be a strictly increasing sequence of strictly positive integers and let y m m≥0 be a strictly decreasing sequence of strictly negative integers. Then, P ∃ n : ∀ t 0, ∃ x : η {x n },{x n −1,x n −2,... } t x = 1 = 1, and P ∃ m : ∀ t 0, ∃ x : η { y m },{ y m +1, y m +2,... } t x = 1 = 1. 404 P ROOF : Define for n, m ≥ 0 the events C n = {∀ t 0, ∃ x : η {x n },{x n −1,x n −2,... } t x = 1}, D m = {∀ t 0, ∃ x : η { y m },{ y m +1, y m +2,... } t x = 1}. From Corollary 3.8, symmetry and translation invariance, P C n = PD m = γ ∀n, m ≥ 0. On the set {x, t : x ∈ Z, t ≥ 0} the Poisson processes used in the construction are n-fold mixing with respect to translations on Z for any n ∈ N. Since x n+1 ≥ x n + 1, this implies that for all k ≥ 1 lim N →∞ P ∩ k j=0 C c N j = 1 − γ k . Consequently P € ∩ n≥0 C c n Š ≤ 1 − γ k for all k ≥ 1. This shows that P ∪ n≥0 C n = 1. The result for the D m ’s is proved similarly. ƒ P ROOF OF T HEOREM 3.9 By the Markov property, it suffices to consider the case where A = { y n : n ∈ N } ∪ {x n : n ∈ N}, B = {0} and the sequences x n and y n are as in the previous lemma. For all n, m ≥ 1, we define E n,m = n ∀t 0, ∃x : η {x n },{x n −1,x n −2,... } t x = 1 o \ n ∀t 0, ∃x : η { y m },{ y m +1, y m +2,... } t x = 1 o . From the last Lemma we know that P∪ n,m E n,m = 1. Hence, it suffices to show that for all n, m ∈ N, we have: P ∀ t 0 ∃x : η A,{0} t x = 2, E n,m = 0. But on the event E n,m the evolution of 2’s is not altered by adding 1’s to the left of y m or to the right of x n . Therefore the result follows from Proposition 3.10. ƒ

3.3 Proof of Theorem 1.1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52