Properties of the corresponding process

2.2 Properties of the corresponding process

From the previous results we can conclude that the GML function E k+1 ν,ν k+1 −λt ν , k ≥ 0, suitably normalized by the factor λt ν k , represents a proper probability distribution and we can indicate it as Pr N ν t = k . Moreover by 2.10 we can consider the process N ν t, t 0 as a time-changed Poisson process. It is well-known see [12] that, for a homogeneous Poisson process N subject to a random time change by the random function Λ0, t], the following equality in distribution holds: N Λ0, t] d = M t, 2.15 where M t, t 0 is a Cox process directed by Λ. In our case the random measure Λ0, t] possesses distribution v 2 ν given in 2.9 with 2.11 and we can conclude that N ν is a Cox process. This conclusion will be confirmed by the analysis of the factorial moments. Moreover, as remarked in [2] and [18], the fractional Poisson process N ν t, t 0 represents a renewal process with interarrival times U j distributed according to the following density, for j = 1, 2, ...: f ν 1 t = Pr ¦ U j ∈ d t © d t = λt ν−1 E ν,ν −λt ν , 2.16 with Laplace transform L ¦ f ν 1 t; s © = λ s ν + λ . 2.17 Therefore the density of the waiting time of the k-th event, T k = P k j=1 U j , possesses the Laplace transform L ¦ f ν k t; s © = λ k s ν + λ k . 2.18 Its inverse can be obtained by applying again 2.7 for β = ν, γ = ν k and ω = −λ and can be expressed, as for the probability distribution, in terms of a GML function as f ν k t = Pr T k ∈ d t d t = λ k t ν k−1 E k ν,ν k −λt ν . 2.19 The corresponding distribution function can be obtained by integrating 2.19 F ν k t = Pr T k t 2.20 = λ k Z t s ν k−1 ∞ X j=0 k − 1 + j−λs ν j jk − 1Γν j + ν k ds = λ k t ν k ν ∞ X j=0 k − 1 + j−λt ν j jk − 1k + jΓν j + ν k = λ k t ν k ∞ X j=0 k − 1 + j−λt ν j jk − 1Γν j + ν k + 1 = λ k t ν k E k ν,ν k+1 −λt ν . We can check that 2.20 satisfies the following relationship Pr T k t − Pr T k+1 t = p ν k t, 2.21 690 for p ν k given in 2.5. Indeed from 2.20 we can rewrite 2.21 as λ k t ν k E k ν,ν k+1 −λt ν − λ k+1 t νk+1 E k+1 ν,νk+1+1 −λt ν = λ k t ν k ∞ X j=0 k − 1 + j−λt ν j jk − 1Γν j + ν k + 1 − λ k+1 t νk+1 ∞ X j=0 k + j−λt ν j jkΓ ν j + ν k + ν + 1 = by putting l = j + 1 in the second sum = λ k t ν k ∞ X j=0 k − 1 + j−λt ν j jk − 1Γν j + ν k + 1 + λ k t ν k ∞ X l=1 k + l − 1−λt ν l l − 1kΓν l + ν k + 1 = λ k t ν k ∞ X j=0 k + j−λt ν j jkΓ ν j + ν k + 1 = p ν k t. Remark 2.3 As pointed out in [18] and [25], the density of the interarrival times 2.16 possess the following asymptotic behavior, for t → ∞: Pr ¦ U j ∈ d t © d t = λt ν−1 E ν,ν −λt ν = − d d t E ν,1 −λt ν 2.22 = λ 1 ν sin νπ π Z +∞ r ν e −λ 1 ν r t r 2 ν + 2r ν cos νπ + 1 d r ∼ sin νπ π Γν + 1 λt ν+1 = ν λΓ1 − νt ν+1 , where the well-known expansion of the Mittag-Leffler function given in 5.3 has been applied. The density 2.22 is characterized by fat tails with polynomial, instead of exponential, decay and, as a consequence, the mean waiting time is infinite. For t → 0 the density of the interarrival times displays the following behavior: Pr ¦ U j ∈ d t © d t ∼ λt ν−1 Γν , 2.23 which means that U j takes small values with large probability. Therefore, by considering 2.22 and 2.23 together, we can draw the conclusion that the behavior of the density of the interarrival times differs from standard Poisson in that the intermediate values are assumed with smaller probability than in the exponential case. Remark 2.4 We observe that also for the waiting-time density 2.19 we can find a link with the solution to the fractional diffusion equation 2.8. This can be shown by rewriting its Laplace transform 2.18 as L ¦ f ν k t; s © = λ k s ν + λ k = Z +∞ e −s ν t λ k t k −1 k − 1 e −λt d t. By recalling that e −s ν y λ = Z +∞ e −sz g ν z; y λ dz, ν 1, y 0, 2.24 691 for the stable law g ν ·; y defined above, we get f ν k t = Z +∞ g ν t; y λ y k −1 e − y k − 1 d y. 2.25 Formula 2.25 permits us to conclude that f ν k t can be interpreted as the law of the stable random variable S ν with a random scale parameter possessing an Erlang distribution.

2.3 The probability generating function

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52