98
Matematika X SMK Kelompok: Penjualan dan Akuntansi
M
12
=
3 4
1 1
= 1 3
–
4 -1 = 7 M
31
=
1 4
5
=
0 -1 – 4 5
= -20 M
13
=
2 4
4 1
=
1 -2 –
4 4 = -18 M
32
=
1 1
5 2
= -
2 -1 – 1 5
= -3 M
21
=
3 2
5
=
0 3 – -2 5
= 10 M
33
=
4 1
2
= -2 4
– 1 0
= -8 M
22
=
3 4
5 2
= -2 3
– 4 5
= -26 Kofaktor dari minor-minor tersebut adalah
C
11
= -1
1+1
M
11
= 1 10
= 10 C
23
= -1
2+3
M
23
= -1
4 = -4 C
12
= -1
1+2
M
12
= -1 7
= -7 C
31
= -1
3+1
M
31
= 1
-20 = -20 C
13
= -1
1+3
M
13
= 1
-18 = -18 C
32
= -1
3+2
M
32
= -1
-3 = 3 C
21
= -1
2+1
M
21
= -1 10
= -10 C
33
= -1
3+3
M
33
= 1
-8 = -8 C
22
= -1
2+2
M
22
= 1
-26 = -26 Matriks kofaktornya adalah
8 3
2 4
26 10
18 7
10 C
C C
C C
C C
C C
33 32
31 23
22 21
13 12
11
Adjoin dari matriks kofaktor adalah transpose dari matriks kofaktor, sehingga
8 4
8 1
3 26
7 2
1 10
8 3
2 4
26 1
18 7
10 A
Adj
T
4. I nvers Matriks
Jika A dan B adalah matriks persegi yang berordo sama, sedemikian sehingga hasil kali AB = BA = I , dengan I matriks identitas maka B adalah invers dari A dan
sebaliknya, yaitu B = A
-1
atau A = B
-1
.
Contoh 30
Dari
5 3
7 4
P dan
4 3
7 5
Q , tunjukkan bahwa kedua matriks saling invers.
Jawab:
1 1
20 21
15 15
28 28
21 20
4 3
7 5
5 3
7 4
Q P
dan
1 1
20 21
12 12
35 35
21 20
5 3
7 4
4 3
7 5
P Q
Karena PQ = QP = I , maka P = Q
–1
dan Q = P
–1
. Jika A adalah matriks persegi, maka invers dari matriks A adalah:
A adj
A det
1 A
1
99
BAB I I I Matriks
Contoh 31
Tentukan invers dari
d c
b a
A
Jawab:
Determinan A detA adalah det A = bc
ad d
c b
a
Minor dari A adalah M
11
= | d | = d M
21
= | b | = b M
12
= | c | = c M
22
= | a | = a Kofaktor dari A adalah
C
11
= -1
1+ 1
M
11
= d C
21
= -1
2+ 1
M
21
= -b C
12
= -1
1+ 2
M
12
= -c C
22
= -1
2+ 2
M
22
= a Matriks kofaktor
a b
c d
sedangkan matriks adjoin adj A =
a c
b d
a b
c d
T
I nvers matriks A adalah
a c
b d
bc ad
1 A
adj A
det 1
A
1
Contoh 32
Dengan menggunakan hasil terakhir pada contoh 31 di atas, tentukan invers dari: a.
4 2
7 4
A b.
3 2
4 1
4 1
5 2
A
Jawab:
a. DetA = -4 4
– -2 7
= -16 + 14 = -2 sehingga:
2 1
2 1
3 2
4 2
7 4
2 1
A Adjoin
. A
det 1
1
A
b. DetA = -2 3
4
+ 4
1
+
1 5
-2 – 5
4 4
+ -2
-1
-2 + 1
3
= -24 – 0 – 10 – 80 – 4 + 0 = -34 – 76 = -110 A
Adjoin A
det 1
1
A
dari
Contoh 29
diperoleh Adj A
110 1
1
A
8 4
8 1
3 26
7 2
1 10