Lipschitz Continuity w.r.t. the Initial Datum

Finally, in order to define the moving frame, let O := Id and O m x := 1 kxk ‚ −x 1 −x 2 −x 2 x 1 Œ := O −1 m x, m = 1, . . . , 4. Hence, dO t · O −1 t = 0 on [τ ℓ , τ ℓ+1 if m ℓ = 0, and otherwise we use Itô’s formula to obtain dO t ·O −1 t = X 2 t x kX t xk 3 ‚ 1 −1 0 Œ d w 1 t + X 1 t x kX t xk 3 ‚ −1 1 Œ d w 2 t + – X 2 t x kX t xk 3 ‚ 1 −1 0 Œ b 1 X t x + X 1 t x kX t xk 3 ‚ −1 1 Œ b 2 X t x + 1 2 kX t xk 4 ‚ 1 0 0 1 Œ™ d t, from which the coefficient functions α 1 , α 2 and β can be defined accordingly. Note that in any case γ = 0. Furthermore, since nx = −x for all x ∈ ∂ G, Dnx = − Id and therefore Φ 2 t = −Q. For simplicity we restrict ourselves now to the case b = 0. Then, the system in Theorem 2.5 can be rewritten as follows: For t ∈ [τ ℓ , τ ℓ+1 , writing Y t = y 1 t , y 2 t , we get in the case m ℓ = 0 that y 1 t = 1l {tinf C ℓ } y 1 τ ℓ , y 2 t = y 2 τ ℓ − Z t τ ℓ y 2 s d l s x, and in the case m ℓ 6= 0 that y 1 t =1l {tinf C ℓ } y 1 τ ℓ + Z t τ ℓ X 2 s x kX s xk 3 y 2 s d w 1 s − Z t τ ℓ X 1 s x kX s xk 3 y 2 s d w 2 s + Z t τ ℓ 1 2 kX s xk 4 y 1 s ds + 1l {t≥inf C ℓ } Z t rt X 2 s x kX s xk 3 y 2 s d w 1 s − Z t rt X 1 s x kX s xk 3 y 2 s d w 2 s + Z t rt 1 2 kX s xk 3 y 1 s ds y 2 t = y 2 τ ℓ − Z t τ ℓ X 2 s x kX s xk 3 y 1 s d w 1 s + Z t τ ℓ X 1 s x kX s xk 3 y 1 s d w 2 s + Z t τ ℓ 1 2 kX s xk 4 y 2 s ds − Z t τ ℓ y 2 s d l s x, with initial value Y τ ℓ as specified in Theorem 2.5. 3 Proof of the Main Result

3.1 Lipschitz Continuity w.r.t. the Initial Datum

Before adressing the question of differentiability we establish pathwise continuity properties of x 7→ X t x t w.r.t. the sup-norm topology. For this we will need that the mapping y 7→ l t y is bounded. Lemma 3.1. For every t 0 we have sup x ∈G l t x ∞ a.s. Proof. See Lemma 3.3 in [4]. Proposition 3.2. Let T 0 be arbitrary and let X t x and X t y, t ≥ 0, be two solutions of 2.1 for any x, y ∈ G. Then, there exists a positive constant c only depending on T such that sup t ∈[0,T ] kX t x − X t yk ≤ kx − yk expcT + l T x + l T y for all x, y ∈ G. 854 Note that the Lipschitz continuity in the initial condition, which is stated here, becomes effective since the Lipschitz constant can be controlled due to the uniform boundedness of l T x in x estab- lished in Lemma 3.1 Proof. The case x = y is clear and it suffices to consider the case T inf{t : X t x = X t y}. We shall proceed similarly to Lemma 3.8 in [6]. Since ∂ G is C 2 -smooth and G is connected and compact, there exists a positive constant c 1 ∞ such that for all x ∈ ∂ G and all y ∈ G, 〈x − y, nx〉 ≤ c 1 kx − yk 2 . 3.1 Let T := 0 and for k ≥ 1, T k := inf ¦ t ≥ T k −1 : kX t x − X t yk 6∈ € 1 2 kX T k −1 x − X T k −1 yk, 2kX T k −1 x − X T k −1 yk Š© ∧ T. Then, by Itô’s formula we obtain for any k ≥ 1 and t ∈ T k −1 , T k ], kX t x − X t yk − kX T k −1 x − X T k −1 yk = Z t T k −1 X r x − X r y, bX r x − bX r y kX r x − X r yk d r + Z t T k −1 X r x − X r y, nX r x kX r x − X r yk d l r x + Z t T k −1 X r y − X r x, nX r y kX r x − X r yk d l r y ≤c 2 Z t T k −1 kX r x − X r yk d r + c 1 Z t T k −1 kX r x − X r yk dl r x + d l r y ≤c 3 kX T k −1 x − X T k −1 yk Z T k T k −1 d r + d l r x + d l r y, where we have used 3.1 and the Lipschitz continuity of b. Hence, for any t ∈ T k −1 , T k ], kX t x − X t yk kX T k −1 x − X T k −1 yk ≤ 1 + c 3 € T k − T k −1 + l T k x − l T k −1 x + l T k y − l T k −1 y Š ≤ exp € c 3 € T k − T k −1 + l T k x − l T k −1 x + l T k y − l T k −1 y ŠŠ , and kX t x − X t yk kx − yk = kX t x − X t yk kX T k −1 x − X T k −1 yk k −1 Y j=1 kX T j x − X T j yk kX T j −1 x − X T j −1 yk ≤ k Y j=1 exp c 3 T j − T j −1 + l T j x − l T j −1 x + l T j y − l T j −1 y ≤ exp € c 3 € T k + l T k x + l T k y ŠŠ ≤ exp c 3 T + l T x + l T y , which proves the proposition. 855 Remark 3.3. By Proposition 3.2 there exists for every T 0 a random ∆ T 0 such that sup t ∈[0,T ] kX t x − X t yk δ 2 , ∀ y ∈ B ∆ T x ∩ G, with δ as in Section 2.3. Then, by the definition of τ ℓ we have for such y and for every ℓ that X t y ∈ U m ℓ for all t ∈ [τ ℓ , τ ℓ+1 . Lemma 3.4. For every t ∈ [0, T ] we have that for all x ∈ G the mapping y 7→ l t y is continuous at x. Proof. Fix T 0 and x ∈ G and set λ t y := Z t nX r y d l r y, y ∈ G, t ∈ [0, T ], which defines for each y ∈ G a process of bounded variation on [0, T ]. Then, we get immediately by Proposition 3.2, 2.1 and the Lipschitz property of b that λ y converges uniformly on [0, T ] to λx as y tends to x. Let now t ∈ [0, T ] and ℓ be such that t ∈ [τ ℓ , τ ℓ+1 . Then, for all y ∈ B ∆ T x ∩ G with ∆ T as in Remark 3.3 we have that X s y, X s x ∈ U m ℓ for all s ∈ [τ ℓ , t. For such y and s we get d l s y − dl s x = 〈∇u 1 m ℓ X s y, nX s y〉 dl s y − 〈∇u 1 m ℓ X s x, nX s x〉 dl s x = ∇u 1 m ℓ X s y dλ s y − ∇u 1 m ℓ X s x dλ s x = σ 1 m ℓ X s y dλ s y − σ 1 m ℓ X s x dλ s x. Hence, l t y − l t x =l τ ℓ y − l τ ℓ x + Z t τ ℓ σ 1 m ℓ X s x dλ s y − dλ s x + Z t τ ℓ σ 1 m ℓ X s y − σ 1 m ℓ X s x d λ s y. Using Proposition 3.2 and the fact that the functions σ m are uniformly Lipschitz the last term con- verges to zero as y tends to x. Recall that λ y converges uniformly on [τ ℓ , t] to λx as y tends to x. Hence, we have that the associated signed measures d λ y on [τ ℓ , t] converge weakly to d λx as y tends to x. Since s 7→ σ 1 m ℓ X s x is bounded and continuous on [τ ℓ , t], the second term converges to zero as y tends to x. We apply the same argument for l τ ℓ y − l τ ℓ x on [τ ℓ−1 , τ ℓ ] and by iterating this procedure we obtain the claim. We fix now an arbitrary x ∈ G, v ∈ R d and T 0. Then, we set x ǫ := x + ǫ v for all ǫ ∈ [a x , b x ] with a x ≤ 0 and b x ≥ 0 such that x ǫ ∈ G for all ǫ ∈ [a x , b x ]. Furthermore, we define for such ǫ and t ∈ [0, T ], M x, ℓ t ǫ :=    if t ∈ [0, τ ℓ , R t τ ℓ b 1 m ℓ X r x ǫ d r + R t τ ℓ σ 1 m ℓ X r x ǫ d w r if t ∈ [τ ℓ , τ ℓ+1 ], M x, ℓ τ ℓ+1 ǫ if t τ ℓ+1 . 856 The index x is there to indicate that the stopping times τ ℓ are the same as in the definition of M x, ℓ that are depending on x and not on ǫ. In particular, M x, ℓ ǫ is a well-defined object, since the coefficient functions b 1 m and σ 1 m have been extended to the whole domain G. Note that M x, ℓ t = M x, ℓ t 0, t ∈ [0, T ]. Finally, we set ∆M x, ℓ t ǫ, ǫ ′ := M x, ℓ t ǫ − M x, ℓ t ǫ ′ , t ∈ [0, T ], ǫ, ǫ ′ ∈ [a x , b x ], so that ∆M x, ℓ t ǫ, 0 = Z t τ ℓ b 1 m ℓ X r x ǫ − b 1 m ℓ X r x d r + Z t τ ℓ σ 1 m ℓ X r x ǫ − σ 1 m ℓ X r x d w r , for t ∈ [τ ℓ , τ ℓ+1 and ǫ ∈ [a x , b x ]. In the next lemma we show that M x, ℓ t ǫ is pathwise jointly continuous in t and ǫ. Lemma 3.5. Let ∆ T be as in Remark 3.3. Then, for a.e. ω ∈ Ω the following holds. For every δ 1 ∈ 0, 1 and δ 2 ∈ 0, 1 2 there exists a random constant K = Kω, δ 1 , δ 2 , T such that ∆ M x, ℓ t ǫ, ǫ ′ − ∆M x, ℓ s ǫ, ǫ ′ ≤ K |ǫ − ǫ ′ | 1 −δ 1 |t − s| 1 2 −δ 2 , ∀s, t ∈ [0, T ], 3.2 for all ǫ, ǫ ′ such that x ǫ , x ǫ ′ ∈ B ∆ T x ∩ G. In particular, for every δ ∈ 0, 1 we have for all such ǫ M x, ℓ t ǫ − M x, ℓ t ≤ K |ǫ| 1 −δ , ∀t ∈ [0, T ], for some random constant K = K ω, δ, T . Proof. In a first step we use Kolmogorov’s continuity theorem to show the existence of a modification of M ℓ,x ǫ t, ǫ satisfying the above estimate and in a second step we show the claim by a continuity argument. Step 1: It follows directly from Proposition 3.2, the uniform Lipschitz continuity of b 1 m and σ 1 m and the Burkholder inequality that for every p 1 there exists a positive constant c 1 = c 1 p, T such that E • M x, ℓ t ǫ − M x, ℓ t ǫ ′ p ˜ ≤ c 1 |ǫ − ǫ ′ | p , ∀t ∈ [0, T ], ǫ, ǫ ′ ∈ [a x , b x ]. Moreover, the functions b 1 m and σ 1 m are uniformly bounded and again by using Burkholder’s inequal- ity we get that for every p 1 E • M x, ℓ t ǫ − M x, ℓ s ǫ p ˜ ≤ c 2 |t − s| p 2 , ∀s, t ∈ [0, T ], ǫ ∈ [a x , b x ] for some constant c 2 = c 2 p, T . Next we will show that for every p 1 there exists a constant c 3 = c 3 p, T such that E • ∆ M x, ℓ t ǫ, ǫ ′ − ∆M x, ℓ s ǫ, ǫ ′ p ˜ ≤ c 3 |ǫ − ǫ ′ | p |t − s| p 2 , ∀s, t ∈ [0, T ], ǫ, ǫ ′ ∈ [a x , b x ]. For the rest of the proof the symbol c denotes a constant whose value may change from one oc- curence to the other one. Let 0 ≤ s ≤ t ≤ T and ǫ, ǫ ′ ∈ [a x , b x ]. Recall that both M x, ℓ ǫ and 857 M x, ℓ ǫ ′ are defined to be constant on [0, T ]\[τ ℓ , τ ℓ+1 ]. Thus, it is enough to consider the case where [s, t] intersects [ τ ℓ , τ ℓ+1 ]. Setting ˆ s i := s ∨ τ ℓ and ˆt := t ∧ τ ℓ+1 we have |ˆt − ˆs| ≤ |t − s|. By the definition of M x, ℓ ǫ and M x, ℓ ǫ ′ we have E • ∆ M x, ℓ t ǫ, ǫ ′ − ∆M x, ℓ s ǫ, ǫ ′ p ˜ ≤c E   Z ˆt ˆ s b 1 m ℓ X r x ǫ − b 1 m ℓ X r x ǫ ′ d r p   + c E   Z ˆt ˆ s σ 1 m ℓ X r x ǫ − σ 1 m ℓ X r x ǫ ′ d w r p   . By the uniform Lipschitz continuity of b m and Proposition 3.2 the first term can be estimated by c |t − s| p E – sup r ∈[ˆs,ˆt] kX r x ǫ − X r x ǫ ′ k p ™ ≤ c |ǫ − ǫ ′ | p |t − s| p . For the second term we get the following estimate by Burkholder’s inequality, the uniform Lipschitz continuity of σ m and again by Proposition 3.2: c E   sup r ∈[ˆs,ˆt] Z r ˆ s σ 1 m ℓ X r x ǫ − σ 1 m ℓ X r x ǫ ′ d w r p   ≤c E    Z ˆt ˆ s kX r x ǫ − X r x ǫ ′ k 2 d r p 2    ≤c |t − s| p 2 E – sup r ∈[ˆs,ˆt] kX r x ǫ − X r x ǫ ′ k p ™ ≤c |ǫ − ǫ ′ | p |t − s| p 2 and we obtain the desired estimate. We apply now Kolmogorov’s continuity theorem, in particular the version for double parameter random fields in Theorem 1.4.4 in [17], which implies that for any given δ 1 ∈ 0, 1 and δ 2 ∈ 0, 1 2 there exists a modification of the random field M x, ℓ ǫ t, ǫ satisfying 3.2 for some random constant K = K ω, δ 1 , δ 2 , T . Step 2: The existence of a modification shown in Step 1 immediately implies that a.s. 3.2 holds for all s, t ∈ [0, T ] ∩ Q and ǫ, ǫ ′ ∈ [a x , b x ] ∩ Q. The claim follows if ∆M x, ℓ t ǫ, ǫ ′ − ∆M x, ℓ s ǫ, ǫ ′ is pathwise continuous in s and t as well as in ǫ and ǫ ′ . It is enough to show the continuity of M x, ℓ t ǫ in t and ǫ. The continuity in t is obvious and for every ǫ such that x ǫ ∈ B ∆ T x ∩ G we get by an application of Itô’s formula as in 2.2 M x, ℓ t ǫ = u 1 m ℓ X t x ǫ − u 1 m ℓ X τ ℓ x ǫ − L t x ǫ , where the right hand side is continuous in ǫ by Proposition 3.2 and Lemma 3.4.

3.2 Convergence of Minimum Times

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52