Example: Processes in the Unit Disc

Remark 2.8. Define the process M t t ≥0 , taking values in R d ×d , via η v t x = M t x · v, v ∈ R d , t ≥ 0. Then, M is a multiplicative functional that can possibly be identified with the discontinuous multi- plicative functional constructed in [12] cf. also [1, 13]. Indeed, both functionals satisfy the same Bismut formula, see 2.9 and page 363 in [12]. Nevertheless, the evolution equation for the func- tional in Theorem 3.4 in [12] is slightly different from the one in Theorem 2.5, since in [12] the geometry of the domain is described in terms of horizontal lifts rather than in terms of a moving frame as in the present paper, which makes a direct identification difficult. Finally, we give another confirmation of the results, namely they will imply that the Neumann condition holds for X . Corollary 2.9. For all f ∈ CG and t 0, the transition semigroup P t f x := E[ f X t x], x ∈ G, satisfies the Neumann condition at ∂ G: x ∈ ∂ G =⇒ D nx P t f x = 0.

2.5 Example: Processes in the Unit Disc

We end this section by considering the example of the unit disc to illustrate our results. Let the domain G = B 1 0 be the closed unit disc in R 2 . Then, for x ∈ ∂ G, the inner normal field is given by nx = −x and the orthogonal projection onto the tangent space by π x z = z − 〈z, x〉x, z ∈ R 2 . The Skorohod equation can be written as X t x = x + Z t bX r x d r + w t − Z t X r x d l r x, t ≥ 0, X t x ∈ G, d l t x ≥ 0, Z ∞ 1l {kX t xk1} d l t x = 0, t ≥ 0, and the system describing the derivatives becomes η t = v + Z t D bX r x · η r d r, if t inf C, η t = η rt − − 〈η rt − , X rt x〉X rt x + Z t rt D bX r x · η r d r, if t ≥ inf C. In this example a possible choice of the coordinate patches is the following. Let U := G be the interior of the disc and u be the identity on U . Further, for some small fixed δ we set U 1 := {x = x 1 , x 2 ∈ G : x 1 δ}, U 2 := {x = x 1 , x 2 ∈ G : x 1 −δ}, U 3 := {x = x 1 , x 2 ∈ G : x 2 δ}, U 4 := {x = x 1 , x 2 ∈ G : x 2 −δ}, and u 1 m x := 1 2 1 − kxk 2 , m = 1, . . . , 4, u 2 m x := arctan x 2 x 1 if m = 1, 2, arctan x 1 x 2 if m = 3, 4. 853 Finally, in order to define the moving frame, let O := Id and O m x := 1 kxk ‚ −x 1 −x 2 −x 2 x 1 Œ := O −1 m x, m = 1, . . . , 4. Hence, dO t · O −1 t = 0 on [τ ℓ , τ ℓ+1 if m ℓ = 0, and otherwise we use Itô’s formula to obtain dO t ·O −1 t = X 2 t x kX t xk 3 ‚ 1 −1 0 Œ d w 1 t + X 1 t x kX t xk 3 ‚ −1 1 Œ d w 2 t + – X 2 t x kX t xk 3 ‚ 1 −1 0 Œ b 1 X t x + X 1 t x kX t xk 3 ‚ −1 1 Œ b 2 X t x + 1 2 kX t xk 4 ‚ 1 0 0 1 Œ™ d t, from which the coefficient functions α 1 , α 2 and β can be defined accordingly. Note that in any case γ = 0. Furthermore, since nx = −x for all x ∈ ∂ G, Dnx = − Id and therefore Φ 2 t = −Q. For simplicity we restrict ourselves now to the case b = 0. Then, the system in Theorem 2.5 can be rewritten as follows: For t ∈ [τ ℓ , τ ℓ+1 , writing Y t = y 1 t , y 2 t , we get in the case m ℓ = 0 that y 1 t = 1l {tinf C ℓ } y 1 τ ℓ , y 2 t = y 2 τ ℓ − Z t τ ℓ y 2 s d l s x, and in the case m ℓ 6= 0 that y 1 t =1l {tinf C ℓ } y 1 τ ℓ + Z t τ ℓ X 2 s x kX s xk 3 y 2 s d w 1 s − Z t τ ℓ X 1 s x kX s xk 3 y 2 s d w 2 s + Z t τ ℓ 1 2 kX s xk 4 y 1 s ds + 1l {t≥inf C ℓ } Z t rt X 2 s x kX s xk 3 y 2 s d w 1 s − Z t rt X 1 s x kX s xk 3 y 2 s d w 2 s + Z t rt 1 2 kX s xk 3 y 1 s ds y 2 t = y 2 τ ℓ − Z t τ ℓ X 2 s x kX s xk 3 y 1 s d w 1 s + Z t τ ℓ X 1 s x kX s xk 3 y 1 s d w 2 s + Z t τ ℓ 1 2 kX s xk 4 y 2 s ds − Z t τ ℓ y 2 s d l s x, with initial value Y τ ℓ as specified in Theorem 2.5. 3 Proof of the Main Result

3.1 Lipschitz Continuity w.r.t. the Initial Datum

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52