Hypotheses getdoc140e. 291KB Jun 04 2011 12:04:07 AM

for each u ∈ H 1 O , where c S 0 is a constant that depends on the dimension and 2 ∗ = 2d d −2 if d 2, while 2 ∗ may be any number in ]2, ∞[ if d = 2 and 2 ∗ = ∞ if d = 1. Therefore one has kuk 2 ∗ ,2;t ≤ c S k∇uk 2,2;t , for each t ≥ 0 and each u ∈ L 2 l oc € R + ; H 1 O Š . And if u ∈ L ∞ l oc € R + ; L 2 O Š T L 2 l oc € R + ; H 1 O Š , one has kuk 2, ∞;t ∨ kuk 2 ∗ ,2;t ≤ c 1 kuk 2 2, ∞;t + k∇uk 2 2,2;t 1 2 , with c 1 = c S ∨ 1. One particular case of interest for us in relation with this inequality is when p 1 = 2, q 1 = ∞ and p 2 = 2 ∗ , q 2 = 2. If I = I 2, ∞, 2 ∗ , 2 , then the corresponding set of associated conjugate numbers is I ′ = I ′ 2, ∞, 2 ∗ , 2 = I 2, 1, 2 ∗ 2 ∗ −1 , 2 , where for d = 1 we make the convention that 2 ∗ 2 ∗ −1 = 1. In this particular case we shall use the notation L ;t := L I;t and L ∗ ;t := L I ′ ;t and the respective norms will be denoted by kuk ;t := kuk I;t = kuk 2, ∞;t ∨ kuk 2 ∗ ,2;t , kuk ∗ ;t := kuk I ′ ;t . Thus we may write kuk ;t ≤ c 1 kuk 2 2, ∞;t + k∇uk 2 2,2;t 1 2 , 3 for any u ∈ L ∞ l oc € R + ; L 2 O Š T L 2 l oc € R + ; H 1 O Š and t ≥ 0 and the duality inequality becomes Z t Z O u s, x v s, x d x ds ≤ kuk ;t kvk ∗ ;t , for any u ∈ L ;t and v ∈ L ∗ ;t .

2.2 Hypotheses

Let {B t := B j t j ∈{1,··· ,d 1 } } t ≥0 be a d 1 -dimentional Brownian motion defined on a standard filtered probability space Ω, F , F t t ≥0 , P . Let A be a symmetric second order differential operator given by A := −L = − P d i, j=1 ∂ i a i, j ∂ j . We assume that a is a measurable and symmetric matrix defined on O which satisfies the uniform ellipticity condition λ|ξ| 2 ≤ X i, j a i, j xξ i ξ j ≤ Λ|ξ| 2 , ∀x ∈ O , ξ ∈ R d , 4 where λ and Λ are positive constants. The energy associated with the matrix a will be denoted by E w, v = d X i, j=1 Z O a i, j x∂ i wx ∂ j vx d x. 5 It’s defined for functions w, v ∈ H 1 O , or for w ∈ H 1 l oc O and v ∈ H 1 O with compact support. 506 We consider the semilinear stochastic partial differential equation 1 for the real-valued random field u t x with initial condition u0, . = ξ., where ξ is a F -measurable random variable with values in L 2 l oc O . We assume that we have predictable random functions f : R + × Ω × O × R × R d → R , h : R + × Ω × O × R × R d → R d 1 g = g 1 , ..., g d : R + × Ω × O × R × R d → R d We define f ·, ·, ·, 0, 0 := f , h ·, ·, ·, 0, 0 := h and g ·, ·, ·, 0, 0 := g = g 1 , ..., g d . We considere the following sets of assumptions : Assumption H: There exist non negative constants C, α, β such that i | f t, ω, x, y, z − f t, ω, x, y ′ , z ′ | ≤ C | y − y ′ | + |z − z ′ | ii P d 1 j=1 |h j t, ω, x, y, z − h j t, ω, x, y ′ , z ′ | 2 1 2 ≤ C | y − y ′ | + β |z − z ′ |, iii P d i=1 |g i t, ω, x, y, z − g i t, ω, x, y ′ , z ′ | 2 1 2 ≤ C | y − y ′ | + α |z − z ′ |. iv the contraction property as in [5] : α + β 2 2 λ . Moreover we introduce some integrability conditions on f , g , h and the initial data ξ : Assumption HD local integrability conditions on f , g and h : E Z t Z K | f t x| + |g t x| 2 + |h t | 2 d x d t ∞ for any compact set K ⊂ O , and for any t ≥ 0. Assumption HI local integrability condition on the initial condition : E Z K |ξx| 2 d x ∞ for any compact set K ⊂ O . Assumption HD E f ∗ ;t 2 + g 2 2,2;t + h 2 2,2;t ∞, for each t ≥ 0. Sometimes we shall consider the following stronger forms of these conditions: 507 Assumption HD2 E f 2 2,2;t + g 2 2,2;t + h 2 2,2;t ∞, for each t ≥ 0. Assumption HI2 integrability condition on the initial condition : E kξk 2 2 ∞. Remark 1. Note that 2, 1 is the pair of conjugates of the pair 2, ∞ and so 2, 1 belongs to the set I ′ which defines the space L ∗ ;t . Since kvk 2,1;t ≤ p t kvk 2,2;t for each v ∈ L 2,2 [0, t] × O , it follows that L 2,2 [0, t] × O ⊂ L 2,1;t ⊂ L ∗ ;t , and kvk ∗ ;t ≤ p t kvk 2,2;t , for each v ∈ L 2,2 [0, t] × O . This shows that the condition HD is weaker than HD2. The Lipschitz condition H is assumed to hold throughtout this paper, except the last section de- voted to Burgers type equations. The weaker integrability conditions HD and HI are also as- sumed to hold everywhere in this paper. The other stronger integrability conditions will be men- tioned whenever we will assume them.

2.3 Weak solutions

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52