Weak solutions getdoc140e. 291KB Jun 04 2011 12:04:07 AM

Assumption HD2 E f 2 2,2;t + g 2 2,2;t + h 2 2,2;t ∞, for each t ≥ 0. Assumption HI2 integrability condition on the initial condition : E kξk 2 2 ∞. Remark 1. Note that 2, 1 is the pair of conjugates of the pair 2, ∞ and so 2, 1 belongs to the set I ′ which defines the space L ∗ ;t . Since kvk 2,1;t ≤ p t kvk 2,2;t for each v ∈ L 2,2 [0, t] × O , it follows that L 2,2 [0, t] × O ⊂ L 2,1;t ⊂ L ∗ ;t , and kvk ∗ ;t ≤ p t kvk 2,2;t , for each v ∈ L 2,2 [0, t] × O . This shows that the condition HD is weaker than HD2. The Lipschitz condition H is assumed to hold throughtout this paper, except the last section de- voted to Burgers type equations. The weaker integrability conditions HD and HI are also as- sumed to hold everywhere in this paper. The other stronger integrability conditions will be men- tioned whenever we will assume them.

2.3 Weak solutions

We now introduce H = H O , the space of H 1 O -valued predictable processes u t t ≥0 such that E sup ≤t≤T u t 2 2 + Z T E E u t d t 1 2 ∞ , for each T 0 . We define H l oc = H l oc O to be the set of H 1 l oc O -valued predictable processes such that for any compact subset K in O and all T 0: E sup ≤t≤T Z K u t x 2 d x + E Z T Z K |∇u t x| 2 d x d t 1 2 ∞. The space of test functions is D = C ∞ c ⊗ C 2 c O , where C ∞ c denotes the space of all real infinite differentiable functions with compact support in R and C 2 c O the set of C 2 -functions with compact support in O . Definition 1. We say that u ∈ H l oc is a weak solution of equation 1 with initial condition ξ if the following relation holds almost surely, for each ϕ ∈ D, Z ∞ [ u s , ∂ s ϕ − E u s , ϕ s + f s, u s , ∇u s , ϕ s − d X i=1 g i s, u s , ∇u s , ∂ i ϕ s ]ds + Z ∞ h s, u s , ∇u s , ϕ s d B s + ξ, ϕ = 0. 6 We denote by U l oc ξ, f , g, h the set of all such solutions u. If u belongs to H , we say that u solves the SPDE with zero Dirichlet condition on the boundary. 508 In general we do not know much about the set U l oc ξ, f , g, h . It may be empty or may contain several elements. But under the conditions H, HI2 and HD2 we know from Theorem 9 in [4] that there exists a unique solution in H and that this solution admits L 2 O -continuous trajectories. As the space H 1 O consists of functions which vanish in a generalized sense at the boundary ∂ O , we may say that a solution which belongs to H satisfies the zero Dirichlet conditions at the boundary of O . Thus we may say that under the assumptions H, HD2 and HI2 there exists a unique solution with null Dirichlet conditions at the boundary of O . This result will be generalised below. We denote by U ξ, f , g, h the solution of 1 with zero Dirichlet boundary conditions whenever it exists and is unique. We should also note that if the conditions H, HD2 and HI2 are satisfied and if u is a process in H , the relation from this definition holds with any test function ϕ ∈ D if and only if it holds with any test function in C ∞ c R + ⊗ H 1 O . In fact, in this case, one may use as space of test functions any space of the form C ∞ c R + ⊗ V, where V is a dense subspace of H 1 O , obtaining equivalent definitions of the notion of solution with null Dirichlet conditions at the boundary of O . In [4] one uses C ∞ c R + ⊗ D A as space of test functions because this is the space which suits better the abstract analytic functional framework of that paper. Remark 2. It is proved in [4] that under HI2 and HD2 the solution with null Dirichlet condi- tions at the boundary of O has a version with L 2 O -continuous trajectories and, in particular, that lim t →0 ku t − ξk 2 = 0, a.s. This property extends to the local solutions in the sense that any element of U l oc ξ, f , g, h has a version with the property that a.s. the trajectories are L 2 K-continuous, for each compact set K ⊂ O and lim t →0 Z K u t x − ξx 2 d x = 0. In order to see this it suffices to take a test function φ ∈ C ∞ c O and to verify that v = φu satifies the equation d v t = € L v t + f t + d i v g t Š + h t d B t , with the initial condition v = φξ, where f t x = φx f t, x, u t x, ∇u t x − 〈 ∇φx, ax∇u t x〉 − 〈∇φx, g t, x, u t x, ∇u t x 〉, g t x = φxg t, x, u t x, ∇u t x − u t xax∇φx and h t x = φxh t, x, u t x, ∇u t x . Thus v = U € φξ, f , g, h Š and the results of [4] hold for v. Remark 3. Let us now precise the sense in which a solution is dominated on the lateral boundary. Assume that v belongs to H 1 l oc O ′ where O ′ is a larger open set such that O ⊂ O ′ . Then it is well known that the condition v + |O ∈ H 1 O expresses the boundary relation v ≤ 0 on ∂ O . Similarly, if a process u belongs to H l oc O ′ , then the condition u + |O ∈ H O ensures the inequality u ≤ 0 on the lateral boundary {[0, ∞[×∂ O }. 509 3 Itô’s formula

3.1 Estimates for solutions with null Dirichlet conditions

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52