Homogenity and isotropy Exact scaling and stochastic scale invariance

with the convention C l x σk , x σ0 = C l x σ0 , x σk = ;, in such a way that one has λ σ1 µC σ l x σ1 + · · · + λ σq µC σ l x σq = Y σ q + q X k=1 r σ k,q X σ k,q . Furthermore, since the variable Y q and X σ k,q k are mutually independent, we get the following decomposition: φ σ λ = E e iY σ q q Y k=1 E e i r σ k,q X σ k,q . 5 Similarly, one can prove φ σ λ, q − 1 = E e iY σ q q Y k=1 E e i r σ k,q −1 X σ k,q . 6 Gathering 5 and 6 yields φ σ λ, q = φ σ λ, q − 1 q Y k=1 E e i r σ k,q X σ k,q E e i r σ k,q −1 X σ k,q . For any m ∈ B σ , one has x σk−1,m 1 x σk,m 1 x σq,m 1 and therefore E e i αX σ k,q =e ϕαH⊗θ C l x σk ,x σq \C l x σk−1 ,x σq =e ϕα H⊗θ C l x σk ,x σq −H⊗θ C l x σk−1 ,x σq Note that H ⊗ θ C l x σi , x σ j = Z B σ θ A l x σi,m 1 ∩ A l x σ j,m 1 Hdm = Z B σ θ A l 0 ∩ A l x σi,m 1 − x σ j,m 1 Hdm =ρ σ l x σi − x σ j The proof can now be completed recursively. For further details, the reader is referred to [1].

4.5 Homogenity and isotropy

Lemma 4.4 is useful to prove the main properties of the MMRM. For instance, to prove the invariance of the law of the MMRM under translations, it suffices to prove that the law of ω l is itself invariant. This results from Lemma 4.4 since each term ρ σ l x σk − x σi is invariant under translations, that is ρ σ l remains unchanged when you replace x 1 , . . . , x q by x 1 + z, . . . , x q + z for a given z ∈ R d . However, Lemma 4.4 may not be adapted to prove the isotropy of the MMRM so that we give a proof by a direct approach: Lemma 4.6. Proof of the isotropy of the MMRM The measure M is isotrop, that is: ∀m ∈ G, MmA A ⊂B0,T l aw = M A A ⊂B0,T . 251 Proof. Once again, it is sufficient to prove that the characteristic function of ω l is invariant under G. This time, we compute that characteristic function in a more direct way. We consider x = x 1 , . . . , x q ∈ R d q , λ 1 , . . . , λ q ∈ R and m ∈ G, and define the function f x m, t, y = q X k=1 λ k 1I C l x k . For m ∈ G, we define mx as mx 1 , . . . , mx q . We have, using the right translation invariance of the Haar measure and the fact that f m x m, t, y = f x mm , t, y: E h exp i λ 1 ω l m x 1 + · · · + iλ q ω l m x q i =E h exp i Z f m x m, t, y µd m, d t, d y i =E h exp i Z f x mm , t, y µd m, d t, d y i = exp Z ϕ ◦ f x mm , t, yHd m θ d t, d y = exp Z ϕ ◦ f x m, t, yHd mθ d t, d y =E h exp i λ 1 ω l x 1 + · · · + iλ q ω l x q i . The isotropy follows.

4.7 Exact scaling and stochastic scale invariance

Lemma 4.8. Exact scaling of M l d x. Given ∀λ ∈]0, 1], ∀x 1 , . . . , x q ∈ B0, T 2, the functions ρ σ l satisfy the exact scaling relation X σ∈S q q X j=1 j X k=1 α σ j, kρ σ λl λx σk − λx σ j = − lnλ + X σ∈S q q X j=1 j X k=1 α σ j, kρ σ l x σk − x σ j . 7 Proof. We remind that for x real we have R A l 0∩A l x θ d t, d y = g l |x|. Given B ⊂ G and x ∈ R d , we define: ρ B l x = Z 1I B m1I {t, y∈A l 0∩A l x m 1 } θ d t, d yHd m. Then we can compute the function ρ B l : ρ B l x = Z 1I {t, y∈A l 0∩A l x m 1 } Hd m θ d t, d y = Z B Z A l 0∩A l x m 1 θ d t, d y Hd m = Z B lnT l + 1 − |x m 1 |l 1I |x m 1 |≤l + lnT |x m 1 |1I l ≤|x m 1 |≤T Hd m 252 Given λ ∈]0, 1] and x ∈ B0, T ρ B λl λx = Z B ln T λl + 1 − |λx m 1 | λl 1I |λx m 1 |≤λl + ln T λ|x m 1 | 1I λl≤|λx m 1 |≤T Hd m = Z B ln T l + 1 − |x m 1 | l 1I |x m 1 |≤l + ln T |x m 1 | 1I λl≤|λx m 1 |≤T Hd m − lnλ Z B 1I |x m 1 |≤l + 1I l ≤|x m 1 |≤T Hd m =ρ B l x − lnλHB We therefore obtain X σ∈S q q X j=1 j X k=1 α σ j, kρ σ λl λx σk − λx σ j = X σ∈S q q X j=1 j X k=1 α σ j, kρ σ l x σk − x σ j − lnλ X σ∈S q q X j=1 j X k=1 α σ j, kHB σ = X σ∈S q q X j=1 j X k=1 α σ j, kρ σ l x σk − x σ j − lnλ X σ∈S q ϕ q X k=1 λ k HB σ = X σ∈S q q X j=1 j X k=1 α σ j, kρ σ l x σk − x σ j − lnλϕ q X k=1 λ k From Lemma 4.4, we deduce that, for any λ ∈]0, 1], there exists a random variable C λ such that ω λl λx x ∈B0,T 2 l aw = C λ + ω l x x ∈B0,T 2 and such that C λ is independent of ω l x x ∈B0,T 2 and its characteristic function is given by E[e iqC λ ] = λ −ϕq . By integrating the previous relation, we obtain the relation M λl λA A ⊂B0,T 2 l aw = W λ M l A A ⊂B0,T 2 where W λ = λ d e C λ is a random variable independent of M l A A ⊂B0,T 2 .

4.9 Non-triviality of the MMRM

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52