Proof of lemma 1.1 Proof of Theorem 2.7 Characteristic function of

Let us suppose that T = 1 for simplicity. Using invariance of the Haar measure H by multiplication, it is plain to see that E[X xX y] is of the form F | y − x| where F : R + → R + ∪ {∞}. We have the scaling relation F a b = ln1 a + F b if a ≤ 1 and b ≤ 1 see also lemma 4.8 below which entails that for |x| ≤ T : F |x| = ln1|x| − Z G ln |e m 1 |Hdm. where e = 1, 0, . . . , 0 is the first vector of the canonical basis. As a corollary, we get the existence of some constant C take C = − R G ln |e m 1 |Hdm such that ln1|x| + C is positive definite as a tempered distribution in a neighborhood of 0. This easily implies that ln1 |x| is positive definite in a neighborhood of 0: to our knowledge, this result is new. This contrasts with the fact that ln + 1|x| is positive definite in dimension d ≤ 3 but is not positive definite for d ≥ 4 see [15]. Remark 3.1. It is easy to see that 1 − |x| α is positive definite in a neighborhhod of 0 as a function defined in R if α ≤ 2. Therefore, one can consider the isotropic and positive definite function in a neighborhhood of 0 in R d defined by: F |x| = Z G 1 − |x m 1 | α Hd m. By scaling, one can see that F |x| = 1 − C|x| α for some C 0. It is easy to see that this entails that 1 − |x| α is positive definite in a neighborhood V of 0. Using the main theorem in [13], one can extend 1 − |x| α defined in V in an isotropic and positive definite function defined in R d . This is in contrast with the so called Kuttner-Golubov problem which is to determine the α, κ 0 such that 1 − |x| α κ + is positive definite in R d . It is known see [8] for instance that for α 0 the function 1 − |x| α + is not positive definite in R d if d ≥ 3. Finally, let us mention that the field X with correlations given by 4 exhibits long range correlations as soon as d ≥ 2. More precisely, we have: Lemma 3.2. If d ≥ 2, we get the following equivalence: E [X xX y] ∼ |x− y|→∞ 2Γd 2 Γ12Γd − 12 r T |x − y| . where Γ is the standard gamma function: Γx = R ∞ t x −1 e −t d t. 4 Proofs

4.1 Proof of lemma 1.1

We will consider the case d = 1 for simplicity the general case is an adaptation of the one dimen- sional case. With no restriction, we can suppose that the α in lemma 1.1 belongs to ]0, 1[. For s, t 0, we have the following inequalities by using the assumptions on M and the concavity of 248 x 7→ x α : E [M [0, t + s] α ] = t + s α E [ t t + s M [0, t] t + s t + s M [t, t + s] s α ] ≥ t + s α E [ t t + s M [0, t] t α + s t + s M [t, t + s] s α ] = t + s α t t + s E [ M [0, t] t α ] + s t + s E [ M [t, t + s] s α ] = t + s α E [M [0, 1] α ] = E[M [0, t + s] α ]. Therefore, the above inequalities are in fact equalities and, since x 7→ x α is strictly concave, this shows that M [0,t] t and M [t,t+s] s are equal almost surely. Let us consider the random non decreasing function f t = M [0, t]. The function f satisfies for all s, t 0: f t t = f t + s − f t s . Letting s go to 0 in the above equality, we conclude that f has a derivative f ′ which satisfies: f ′ t = f t t . Therefore, f t is of the form C t where C is some constant.

4.2 Proof of Theorem 2.7

The relation E[e ω l x ] = e ψ1H⊗θ C l x = 1 and the fact that for l ′ l, ω l ′ x − ω l x is indepen- dent of F l ensures that for each Borelian subset A ⊂ R d , the process M l A is a martingale with respect to F l . Existence of the MRM then results from [10]. Properties i and ii result from Fatou’s lemma.

4.3 Characteristic function of

ω l x As in [1], the crucial point is to compute the characteristic function of ω l x. We consider x 1 , . . . , x q ∈ R d q and λ 1 , . . . , λ q ∈ R q and we have to compute φλ = E e i λ 1 ω l x 1 +···+iλ q ω l x q . Let us denote by S q the permutation group of the set {1; . . . ; q}. For a generic element σ ∈ S q , we define B σ = {m ∈ G; x σ1,m 1 · · · x σq,m 1 }. Finally, given x, z ∈ R d , we define cone like subset product C σ l x = C l x ∩ B σ = {m, t, y ∈ B σ × S; t, y ∈ A l x m 1 } and C σ l x, z = {m, t, y ∈ B σ × S; t, y ∈ A l x m 1 ∩ A l z m 1 }. 249 Lemma 4.4. The characteristic function of the vector ω l x i 1 ≤i≤q exactly matches E h exp i λ 1 ω l x 1 + · · · + iλ q ω l x q i = exp X σ∈S q q X j=1 j X k=1 α σ j, kρ σ l x σk − x σ j where ρ σ l x = H ⊗ θ C σ l 0, x, and α σ j, k = ϕr σ k, j + ϕr σ k+1, j −1 − ϕr σ k, j −1 − ϕr σ k+1, j r σ k, j = j X i=k λ σi or 0 if k j. Moreover q X j=1 j X k=1 α σ j, k = ϕ q X k=1 λ k . Proof. Without loss of generality, we assume x i 6= x j for i 6= j. We point out that the family B σ σ∈S d is a partition of G up to a set of null H-measure. The function φ breaks down as φλ =E e i λ 1 µC l x 1 +···+iλ q µC l x q =E e P σ∈Sd i λ 1 µC σ l x 1 +···+iλ q µC σ l x q = Y σ∈S d E e i λ 1 µC σ l x 1 +···+iλ q µC σ l x q Let us fix σ ∈ S q . We focus on the term φ σ λ = E e i λ 1 µC σ l x 1 +···+iλ q µC σ l x q = Ee i λ σ1 µC σ l x σ1 +···+iλ σq µC σ l x σq . Given σ ∈ S d and p ≤ q, we further define φ σ λ, p = E e i λ σ1 µC σ l x σ1 +···+iλ σp µC σ l x σp . From now on, we adapt the proof of [1, Lemma 1] and proceed recursively. We define Y σ q = q X k=1 λ σk µC σ l x σk \ C l x σq , which stands for the contribution of the points of the above sum that do not belong to C l x σq . Moreover, the points in the set C l x σq can be grouped into the disjoint sets C l x σk , x σq \ C l x σk−1 , x σq . We stress that the latter assertion is valid since, for m ∈ B σ , the coordinates are suitably sorted, that is: x σ1,m 1 x σ2,m 2 · · · x σq,m 1 . We define X σ k,q = µ C l x σk , x σq \ C l x σk−1 , x σq 250 with the convention C l x σk , x σ0 = C l x σ0 , x σk = ;, in such a way that one has λ σ1 µC σ l x σ1 + · · · + λ σq µC σ l x σq = Y σ q + q X k=1 r σ k,q X σ k,q . Furthermore, since the variable Y q and X σ k,q k are mutually independent, we get the following decomposition: φ σ λ = E e iY σ q q Y k=1 E e i r σ k,q X σ k,q . 5 Similarly, one can prove φ σ λ, q − 1 = E e iY σ q q Y k=1 E e i r σ k,q −1 X σ k,q . 6 Gathering 5 and 6 yields φ σ λ, q = φ σ λ, q − 1 q Y k=1 E e i r σ k,q X σ k,q E e i r σ k,q −1 X σ k,q . For any m ∈ B σ , one has x σk−1,m 1 x σk,m 1 x σq,m 1 and therefore E e i αX σ k,q =e ϕαH⊗θ C l x σk ,x σq \C l x σk−1 ,x σq =e ϕα H⊗θ C l x σk ,x σq −H⊗θ C l x σk−1 ,x σq Note that H ⊗ θ C l x σi , x σ j = Z B σ θ A l x σi,m 1 ∩ A l x σ j,m 1 Hdm = Z B σ θ A l 0 ∩ A l x σi,m 1 − x σ j,m 1 Hdm =ρ σ l x σi − x σ j The proof can now be completed recursively. For further details, the reader is referred to [1].

4.5 Homogenity and isotropy

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52