r, π4 with time r, r, π4 ≤ ~T γ r, π4 ≤ E~T γ r, π4 r, π4

If te = 0, then g ε e = 0. If te = x h, then g ε e = x. If te = h, then g ε e ¨ = 0 with probability ε F h − ~p c −1 , = h with probability 1 − ε Fh − ~p c −1 . We need to verify that g ε has distribution G ε . Since the verification is simple, we leave to the readers. Now we show Theorem 5 under case a i. Let γ t be an optimal path for ~ T t

0, r, π4 with time

state te, and let γ g ε be an optimal path for T g ε

0, r,

π4 with time state g ε e. Here, for each configuration, we select γ g ε in a unique method. For each edge e ∈ γ g ε , we consider passage time te. If te h, then g ε e = te by our definition. In addition, if te = h, it also follows from the definition that g ε e = h or g ε e = 0. Therefore, ~ T t

0, r, π4 ≤ ~T γ

g ε + h X e ∈γ gε I te=h,g ε e=0 . 6.4 By 6.4, E~ T t

0, r, π4 ≤ E~T γ

g ε + h X β X e ∈β P[te = h, g ε e = 0, γ g ε = β], 6.5 where the first sum in 6.5 is over all possible NE paths β from 0 to r, π4. Let us estimate X β X e ∈β P[te = h, g ε e = 0, γ g ε = β]. Note that the value of te may depend on the value of g ε e, but not on the other values of g ε b for b 6= e, so by our definition, P[te = h, g ε e = 0, γ g ε = β] = P[te = h | g ε e = 0, γ g ε = β]P[g ε e = 0, γ g ε = β] ≤ P[te = h | g ε e = 0]P[ γ g ε = β] = ε[~p c F h − ~p c ] −1 P[ γ g ε = β]. 6.6 Note that β has at most 2r edges, so by using 6.6 there exists C such that X β X e ∈β P[te = h, g ε e = 0, γ g ε = β] ≤ X β X e ∈β C εP[γ g ε = β] ≤ 2Cεr. 6.7 By 6.5 and 6.7, there exists C = CF such that E T t

0, r, π4

r ≤ E ~ T g ε

0, r, π4

r + C ε. 6.8 We take r → ∞ in 6.8 to have ~ µ F π4 ≤ ~µ G ε π4 + Cε. 6.9 Note that G ε ~p c , so by Corollary 3 and 6.9, ~ µ F π4 = 0. 2283 Therefore, Theorem 5 follows under case a i. Finally, we focus on case a without other assumptions. As we mentioned, te is not a constant. Thus, there exists h 1 h such that F h 1 F 0. We construct Hx = ¨ F 0 if 0 ≤ x h 1 , F x if h 1 ≤ x. With this definition, H ≤ F, and H0 = ~p c , and Hx has a jump point at h 1 . By the analysis of case a i, we have ~ µ H π4 = 0. 6.10 By Lemma 7, ~ µ F π4 ≤ ~µ H π4 = 0. 6.11 Thus, Theorem 5 under case a follows from 6.11. If we put cases a and b together, Theorem 5 follows. Proof of Theorem 7. In this proof, we assume that te only takes 0 open and 1 closed with probability ~p c and 1 − ~p c , respectively. Let L r be the line y = −x + r inside the first quadrant. Note that L is just the origin. Bezuidenhout and Grimmett 1990 showed that there is no infinite NE zero-path on Z 2 . Thus, for fixed L r 1 P[L r 1 → ∞] = 0. 6.18 By 6.18, there exists 0 δ 1 and r 2 = r 2 r 1 such that P[L r 1 6→ L r 2 ] ≥ δ. 6.19 If L r 1 6→ L r 2 , then NE path from L r 1 to L r 2 has to use at least one edge with passage time 1. Let I L r 1 , L r 2 be the indicator of the event that there is no NE open path from L r 1 to L r 2 . For large r, let r 1 ≤ r 2 ≤ · · · ≤ r m ≤ r be a sequence such that for i m − 1, P[L r i 6→ L r i+1 ] ≥ δ. 6.20 Note that any NE path from the origin to r, π4 has to cross the strip between L i and L i+1 for i = 1, · · · , m − 1, so E~ T

0, r, π4 ≥ E

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52