r, π4 ≤ C. r, r, θ ≤ δr] ≤ C r, θ ] ≥ C r. r,

With 1.9 and Theorem 5, if 1.3 holds and F 0 = ~p c , then there exists C = CF such that E~ T

0, r,

π4 ≤ C p r log r. 1.10 Remark 4. The upper bound might not be tight at the right side of 1.10. In fact, we believe the following conjecture in a much tight upper bound: Conjecture 2. If 1.3 holds and F 0 = ~p c , show that E~ T

0, r,

π4 ≤ C log r. 1.11 Note that 1.11 holds for the undirected first passage time see Chayes, Chayes, and Dur- rett 1986. In contrast, the lower bound is more complicated. It might depend on how F x ↓ F0 = ~p c as x ↓ 0 as the same way as the undirected model see Zhang 1999. We believe the following conjecture. Conjecture 3. There exists F with F 0 = ~p c such that for every r 0, E ~ T

0, r, π4 ≤ C.

1.12 However, we believe that ~ T 0, r, π4 has a subcritical behavior for other distributions similar to the behavior of undirected passage time. More precisely, we expect lim r →∞ E~ T

0, r,

π4 = ∞ 1.13 for some F with F 0 = ~p c . In fact, we may simply ask the same questions when te only takes 0 and 1 with F 0 = ~p c . Conjecture 4. If te only takes 0 and 1 with F 0 = ~p c , show that C 1 log r ≤ E~T 0, r, π4 ≤ C 2 log r. 1.14 Note that 1.14 is indeed true see Chayes, Chayes, and Durrett 1986 for the undirected critical model. Furthermore, Kesten and Zhang 1997 showed a central limit theorem for the passage time in the undirected critical model. Here, we partially verify 1.14 for the directed critical model: Theorem 7. If te only takes two values 0 and 1 with F 0 = ~p c , then lim r →∞ E~ T

0, r, π4 = ∞.

Remark 5. As we mentioned above, we know the continuity of ~ µ F θ in θ . We believe that there is a power law when θ → π4. More precisely, we assume that F0 = ~p c and te only takes values 0 and 1. Conjecture 5. ~ µ F θ ≈ |θ − π4| α for some 0 α 1. 2269

1.3. Subcritical phase. Finally, we focus on the subcritical phase: F 0 = p ~p

c . On this phase, we show the following theorem: Theorem 8. If F 0 ~p c , then there exist positive constants δ = δF and C i = C i F, δ for i = 1, 2 such that for every r 0 and every θ ∈ [0, π2], P[~ T

0, r, θ ≤ δr] ≤ C

1 exp −C 2 r. By Theorem 8, there exists C = CF such that for all r and θ E[~ T

0, r, θ ] ≥ C r.

1.15 With 1.15 and 1.1, we have the following corollary: Corollary 9. If Ete ∞ and F0 ~p c , then for every θ ∈ [0, π2], ~ µ F θ 0. Remark 6. We would like to focus on a special case in the subcritical phase. In fact, Hammersley and Welsh 1965 considered te + a for some real number a. They used F ⊕ ax = Fx − a to denote the distribution. Clearly, if a 0, each edge takes at least a time a, so F ⊕ a0 = 0. Therefore, it is in the subcritical phase. Durrett and Liggett 1981 consider the case where F ⊕ aa ~p c 1.16 for undirected passage time T u, v. When r, θ is in the percolation cone, by 1.5 it can be shown that an optimal path for T

0, r,

θ is directed with a positive probability. Thus, by Corollary 3 lim r →∞ T 0, r, θ r = µ F ⊕a θ = a. This well known result see Durrett and Liggett 1981 is called the flat edge of the shape. 1.4. Shape of the growth model. We may discuss the shape theorem for this directed first passage percolation. Define the shape as C t = {r, θ ∈ R + × [0, π2] : ~T 0, r, θ ≤ t}. For each r, θ ∈ R + × [0, π2], by the subadditive argument, lim s →∞ 1 s ~ T

0, sr,

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52