Central limit theorem for Π n n n n n n n n n

3.2 Central limit theorem for Π

n ǫ n In this subsection we establish a central limit theorem for Π n ǫ n . Set S n ǫ n = a n Π n ǫ n − EΠ n ǫ n σ n , where a n = nr d n 1 4 and σ 2 n = Var a n Π n ǫ n − EΠ n ǫ n . We shall verify that as n → ∞ S n ǫ n D → N 0, 1. 3.13 To show this we require the following special case of Theorem 1 of Shergin 1990. Fact 3.1. Let X

i,n

: i ∈ Z d denote a triangular array of mean zero m-dependent random fields, and let J n ⊂ Z d be such that i Var P i ∈J n X

i,n

→ 1 as n → ∞, and ii For some 2 s 3, P i ∈J n E |X

i,n

| s → 0 as n → ∞. Then X i ∈J n X

i,n

D → N 0, 1. We use Shergin’s result as follows. Recall the definition of ǫ n in 3.1 and also that VarΠ n ǫ n = Z ˜ E n Z ˜ E n C ∆ n x, ∆ n y dxd y, with ˜ E n = E n ∩ S r n f . Next, consider the regular grid given by A i = x i 1 , x i 1 +1 ] × . . . × x i d , x i d +1 ], where i =i 1 , . . . , i d , i 1 , . . . , i d ∈ Z and x i = i r n for i ∈ Z. Define R i = A i ∩ ˜ E n . With J n = {i ∈ Z d : A i ∩ ˜ E n 6= ; } we see that {R i : i ∈ J n } constitutes a partition of ˜ E n . Note that for each i ∈ J n , λ R i ≤ r d n . We claim that for all large n Card J n ≤ C p ǫ n r −d n . 3.14 2629 To see this, we use the fact that, according to 4.3, there exists ¯ ρ 0 such that for all large n, ˜ E n ⊂ V € ∂ S f , ¯ ρpǫ n Š . Thus, since r n pǫ n → 0 by 3.2, [ i ∈J n A i ⊂ V € ∂ S f , ¯ ρ + 2pǫ n Š and, consequently, r d n Card J n ≤ λ V € ∂ S f , ¯ ρ + 2pǫ n Š ≤ C p ǫ n . Keeping in mind the fact that for any disjoint sets B 1 , . . . , B k in R d such that, for 1 ≤ i 6= j ≤ k, inf ¦ kx − yk : x ∈ B i , y ∈ B j © r n , then Z B i ∆ n xdx, i = 1, . . . , k, are independent, we can easily infer that X

i,n

= a n Z R i ∆ n x − E∆ n x dx σ n , i ∈ J n , constitutes a 1-dependent random field on Z d . Recalling that a n = nr d n 1 4 and σ 2 n → σ 2 f as n → ∞ by 3.5 we get, for all i ∈ J n , X

i,n

≤ a n σ n λR i ≤ Cnr 3d n 1 4 . Hence, by 3.14, X i ∈J n E |X

i,n

| 5 2 ≤ C Card J n nr 3d n 5 8 ≤ Cnr 3d 2 n 1 2 . Clearly this bound when combined with r.iii and d ≥ 2, gives as n → ∞, X i ∈J n E |X

i,n

| 5 2 → 0, which by the Shergin Fact 3.1 with s = 5 2 yields S n ǫ n = X i ∈J n X

i,n

D → N 0, 1. Thus 3.13 holds. 2630

3.3 Central limit theorem for L

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52