Notation and assumptions getdoca8fd. 198KB Jun 04 2011 12:04:49 AM

2 Asymptotic normality of λS n ∆S f

2.1 Notation and assumptions

Throughout the paper, we shall impose the following set of assumptions related to the support of f . To state some of them we shall require a few concepts and terms from Riemannian geometry. For a good introduction to the subject we refer the reader, for instance, to the book by Gallot, Hulin and Lafontaine 2004. We make use of the notation ◦ S f to denote the interior of S f . Assumption Set 1 a The support S f of f is compact in R d , with d ≥ 2. b f is of class C 1 on R d , and of class C 2 on T ∩ ◦ S f , where T is a tubular neighborhood of S f . c The boundary ∂ S f of S f is a smooth submanifold of R d of codimension 1. d The set {x ∈ R d : f x 0} is connected. e f 0 on ◦ S f . Roughly speaking, under Assumption 1-c, the boundary ∂ S f is a subset of dimension d − 1 of the ambient space R d . For instance, consider a density supported on the unit ball of R d . In this case, the boundary is the unit sphere of dimension d − 1. Note also that one can relax Assumption 1-d to the case where the set {x ∈ R d : f x 0} has multiple connected components, see Remark 3.3 in Biau, Cadre, and Pelletier 2008. More precisely, under Assumption 1-c, ∂ S f is a smooth Riemannian submanifold with Riemannian metric, denoted by σ, induced by the canonical embedding of ∂ S f in R d . The volume measure on ∂ S f , σ will be denoted by v σ . Furthermore, ∂ S f , σ is compact and without boundary. Then by the tubular neighborhood theorem see e.g., Gray, 1990; Bredon, 1993, p. 93, ∂ S f admits a tubular neighborhood of radius ρ 0, V ∂ S f , ρ = ¦ x ∈ R d : distx, ∂ S f ρ © , i.e., each point x ∈ V ∂ S f , ρ projects uniquely onto ∂ S f . Let {e p ; p ∈ ∂ S f } be the unit-norm section of the normal bundle T ∂ S ⊥ f that is pointing inwards, i.e., for all p ∈ ∂ S f , e p is the unit normal vector to ∂ S f directed towards the interior of S f . Then each point x ∈ V ∂ S f , ρ may be expressed as x = p + ve p , 2.1 where p ∈ ∂ S f , and where v ∈ R satisfies |v| ≤ ρ. Moreover, given a Lebesgue integrable function ϕ on V ∂ S f , ρ, we may write Z V ∂ S f , ρ ϕxdx = Z ∂ S f Z ρ −ρ ϕp + ve p Θp, udu v σ dp, 2.2 2620 where Θ is a C ∞ function satisfying Θp, 0 = 1 for all p ∈ ∂ S f . See Appendix B in Biau, Cadre, and Pelletier, 2008. Denote by D 2 e p the directional differentiation operator of order 2 on V ∂ S f , ρ in the direction e p . It will be seen in the proofs in Section 3 that the variance in our central limit theorem is determined by the second order behavior of f near the boundary of its support. Therefore to derive this variance we shall need the following set of second order smoothness assumptions on f . Assumption Set 2 a There exists ρ 0 such that, for all p ∈ ∂ S f , the map u 7→ f p + ue p is of class C 2 on [0, ρ]. b There exists ρ 0 such that sup p ∈∂ S f sup ≤u≤ρ D 2 e p f p + ue p ∞. c There exists ρ 0 such that inf p ∈∂ S f inf ≤u≤ρ D 2 e p f p + ue p 0. For similar smoothness assumptions see Section 2.4 of Mason and Polonik 2009. The imposition of such conditions appears to be unavoidable to derive a central limit theorem. Note also that Assumption Sets 1 and 2 are the same as the ones used in Biau, Cadre, and Pelletier 2008. In particular, we assume throughout that the density f is continuous on R d . Thus, we are in the case of a non-sharp boundary, i.e., f decreases continuously to zero at the boundary of its support. The case where f has sharp boundary requires a different approach see for example Härdle, Park, and Tsybakov, 1995. The analytical assumptions on f Assumption Set 2 are stipulations on the local behavior of f at the boundary of the support. In particular, the restrictions on f imply that inside the support and close to the boundary the maps u 7→ f p + ue p , with p ∈ ∂ S f , are strictly convex see the Appendix.

2.2 Main result

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52