Proof of Theorem 2.1b

Next, by 3.63 we have W 2 T ≤ Z R d Z t 2 t 1 s −γα Z t 2 −t 1 p u du ∗ e ϕ T y 1+ β dsd y. The Young inequality, substitution u ′ = ut 2 − t 1 , and self-similarity imply W 2 T ≤ Ct 1− γα 2 − t 1− γα t 2 − t 1 1+ β−dαβ || f || 1+ β 1+ β ||ϕ|| 1+ β 1 ≤ C 1 t 1− γα 2 − t 1− γα 1 2+ β−dαβ , 3.67 by 3.41. Combining 3.66, 3.67, 3.61 and using 3.59, we obtain 3.57. It remains to prove 3.56. Applying the usual substitutions to AT given by 3.58 we obtain AT = H T T 2−d α−γα F 2 T Z 1 Z 1 s Z R 3d |x| −γ p s x − y e ϕ T yp u−s y − z e ϕ T zχsχud x dzd y duds, hence, by 3.60, 3.55 and the Hölder inequality, AT ≤ C H T T 2−d α−γα F 2 T Z t 2 t 1 Z t 2 s s −γα || e ϕ T || 1+ β β ||p u−s ∗ e ϕ T || 1+ β duds. We use 3.65, 3.45 and 2.5, obtaining AT ≤ C 1 t 1− γα 2 − t 1−1 α 1 t 2 − t 1 1−d αβ1+β , which implies 3.56 by 3.59. This completes the proof of tightness. ƒ

3.4 Proof of Theorem 2.1b

We prove the theorem for γ = d 2 + β 1 + β α 3.68 see Remark 2.2c. Recall that in this case kT occurring in 2.8 and 2.9 is log T . According to the discussion in Section 3.1 it suffices to prove 3.12, 3.13 and 3.15. By the form of the limit process see 2.3, 3.12 is equivalent to lim T →∞ I 1 T = σS d−1 α Z R d Z 1 p s y Z 1 s p u−s yχudu 1+ β dsd y ‚Z R d ϕzdz Œ 1+ β , 3.69 where σS d−1 is the measure of the unit sphere in R d = 2 if d = 1. 1350 By 3.9, 3.2, 3.6, using similar substitutions as in the previous section, we obtain I 1 T = 1 log T Z R d Z 1 Z R d p s x T −1α − y Z 1 s Z R d p u−s y − zχu e ϕ T zdzdu 1+ β 1 1 + |x| d d y dsd x, 3.70 where e ϕ T is given by 3.34. We write I 1 T = I ′ 1 T + I ′′ 1 T + I ′′′ 1 T , 3.71 where I ′ 1 T = 1 log T Z 1 |x|T 1 α Z 1 Z R d ... 3.72 I ′′ 1 T = 1 log T Z |x|≥T 1 α Z 1 Z R d ... 3.73 I ′′′ 1 T = 1 log T Z |x|≤1 Z 1 Z R d .... 3.74 Passing to polar coordinates in the integral with respect to x we have I ′ 1 T = 1 log T Z T 1 α 1 Z S d−1 Z 1 Z R d p s w r T −1α − yg s ∗ e ϕ T y 1+ β r d−1 1 + r d d y ds σd wd r, where g is defined by 3.35. The crucial step is the substitution r ′ = log r log T , 3.75 which gives I ′ 1 T = Z 1 α Z S d−1 Z 1 Z R d p s w T r−1 α − yg s ∗ e ϕ T y 1+ β T r d 1 + T r d d y ds σd wd r. It is now clear that if one could pass to the limit under the integrals as T → ∞, then I ′ 1 T would converge to the right hand side of 3.69. This procedure is indeed justified by the fact that for f defined by 3.22 we have f ∈ L 2+ β R d , 3.76 which follows from 3.68, 3.23 and 3.24. We omit the details, which are similar to the argument in [BGT6] see 3.51 therein. Next we show that I ′′ 1 T and I ′′′ 1 T tend to zero. In I ′′ 1 T see 3.73 we substitute x ′ = x T −1α and we use 3.36, obtaining I ′′ 1 T ≤ C log T Z |x|1 Z 1 Z R d p s x − y f ∗ e ϕ T y 1+ β T d α 1 + |x| d T d α d y dsd x ≤ C 1 log T || f ∗ e ϕ T || 1+ β 1+ β ≤ C 1 log T || f || 1+ β 1+ β ||ϕ|| 1+ β 1 → 0. 1351 I ′′′ 1 T see 3.74 is estimated as follows: I ′′′ 1 T ≤ C log T Z |x|≤1 f ∗ f ∗ e ϕ T 1+ β x T −1α d x ≤ C 2 log T || f ∗ f ∗ e ϕ T 1+ β || ∞ ≤ C 2 log T || f || 2+ β || f ∗ e ϕ T 1+ β || 2+β1+β ≤ C 2 log T || f || 2+ β 2+ β ||ϕ|| 1+ β 1 → 0, by 3.76. This and 3.71 prove 3.69. To prove 3.13 we use 3.14 and easily obtain I 2 T ≤ C H T T 2−2d α F 2 T Z R 2 f ∗ e ϕ T f ∗ e ϕ T x T −1α 1 1 + |x| d d x. We write the right-hand side as the sum of integrals over {|x| ≤ T 1 α } and {|x| T 1 α }. To estimate the integral over {|x| ≤ T 1 α } we use sup T 2 1 log T Z |x|≤T 1 α 1 1 + |x| d d x ∞, 3.77 and in the second integral we apply 1 1 + |x| d ≤ T −dα . For each of the integrals we use ap- propriately the Hölder inequality, properties of the convolution and 3.45, obtaining the estimates C 1 T 2d α12+β−11+β and C 2 T dα12+β−21+β , respectively the factors involving negative powers of H T and log T have been estimated by constants. These bounds tend to zero as T → ∞ by 3.68. We omit details. This proves 3.13. To prove 3.16 and 3.17 we use 3.18 and 3.19. Again, we consider separately the integrals over {|x| ≤ T 1 α } and {|x| T 1 α }, and apply the same tricks as for I 2 T . For J 1 T we obtain the estimate J 1 T ≤ C T dα1+β2+β−1 → 0 log T and H T appear with negative powers only, whereas J 2 T ≤ C 1 T H β T log T β + C 2 T H β T log T 1+ β → 0 by assumption 2.9. The proof of Theorem 2.1 is complete ƒ

3.5 Proof of Proposition 2.3

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52