Proof of Theorem 2.6 getdoc1198. 429KB Jun 04 2011 12:04:06 AM

It is now seen that one should have lim T →∞ I 1 T = lim T →∞ I ′ 1 T = C 1+ β α,d Z R d Z R d p 1 x − y|x| −γ | y| −d−α1+β d x d y ‚Z R d ϕzdz Œ 1+ β χ 1+ β 3.97 Note that the integrals are finite by 3.21, 3.28 and 2.16. The justification of 3.97 requires some work, but we omit it for brevity. iii As d = γ, we must keep the measure µ γ in its original form 1.8. Arguing as in the proof of ii and taking into account 2.14, instead of 3.96 we obtain I ′ 1 T = 1 log T Z 1 Z R d Z R d p 1 x − y T sd α 1 + |x T s α | d ×   Z T 1−s −1 Z R d p u y − z T −sα ϕzχu + 1T s−1 dzdu   1+ β d y d x ds. Since lim T →∞ 1 log T Z R d p 1 x − y T sd α 1 + |x T s α | d d x = s 1 α σS d−1 p 1 y, it can be shown, with some effort, that lim T →∞ I 1 T = lim T →∞ I ′ 1 T = C 1+ β α,d 1 2 α σs d−1 Z R d p 1 y| y| −d−α1+β d y Z R d ϕzdz 1+ β χ 1+ β 0. Again, we omit the remaining parts of the proof.

3.7 Proof of Theorem 2.6

We only give an outline of the proof. The following lemma is constantly used. Lemma Let ϕ ∈ S R d , ϕ ≥ 0. a If d α2 + β1 + β, then the functions Gϕ, GGϕ 1+ β and GG ϕ 2 are bounded. b If d α1 + ββ, then additionally Gϕ 1+ β and GG ϕ 1+ β 1+ β are integrable and bounded. c If α γ ≤ d and d α2 + ββ − γβ, then additionally to the properties in a, Z R d GG ϕ 1+ β x 1 1 + |x| γ d x ∞. 1359 This Lemma follows easily from 1.12 and 3.25-3.28. Proof of part a of the theorem. As before we consider µ γ d x = |x| −γ d x. In 3.9 we substitute u ′ = s − u, then s ′ = T − sT and, finally, x ′ = x T 1 α s −1α , obtaining I 1 T = Z R d Z 1 Z R d p 1 x − ys −1α T −1α Z T 1−s T u ϕ yχ s + u T du 1+ β s −γα |x| −γ d y dsd x see 2.22. It is easily seen that by part b of the Lemma we have lim T →∞ I 1 T = Z R d p 1 x|x| −γ d x Z 1 s −γα χ 1+ β sds Z R d Gϕ y 1+ β d y. 3.98 For β 1 this is exactly log Eexp{−C〈 e X , ϕ ⊗ ψ〉}, where X is the limit process described in the theorem. Moreover, in this case 3.14 and boundedness of G ϕ easily imply I 2 T ≤ C T 1−γα1−21+β → 0. For β = 1 we use 3.10 and 3.4, obtaining I 2 T = I ′ 2 T − I ′′ 2 T − V 2 I ′′′ 2 T , where I ′ 2 T = H T F 2 T Z T Z R d Z R d p s x − y|x| −γ d x ϕ yχs Z T s T u−s ϕ yχ  u T ‹ dud y ds, I ′′ 2 T = H T F 2 T Z R d Z T Z R d p T −s x − yϕ yχ T T − s × Z s T s−u ϕχT − uv T ·, u y|x| −γ dud y dsd x I ′′′ 2 T = H T F 2 T Z R d Z T Z R d p T −s x − yϕ yχ T T − s Z s T s−u v 2 T ·, u y|x| −γ dud y dsd x. Substituting u ′ = u − s, s ′ = sT , and then x ′ = x T 1 α s 1 α and using part a of the Lemma and 2.22 we have lim T →∞ I ′ 2 T = Z R d p 1 x|x| −γ d x Z 1 s −γα χ 2 sds Z R d ϕ yGϕ yd y. 3.99 Applying 3.5, 2.22 and the Lemma above we get I ′′ 2 T ≤ C H T F 3 T Z R d Z T Z R d p s x − y|x| −γ ϕ yGϕGϕ yd y dsd x ≤ C 1 T −121−γα → 0, 1360 and, analogously, I ′′′ 2 T ≤ C H T F 3 T Z R d Z T Z R d p s x − y|x| −γ ϕ yGGϕ 2 yd y dsd x ≤ C 2 T −121−γα → 0. This and 3.98, 3.99 imply that for β = 1 the limit of V 2I 1 T + I 2 T is exactly log Eexp{−C〈 e X , ϕ ⊗ ψ}. Similar estimations, together with the Lemma, yield 3.16 and 3.17. This completes the proof of part a of the theorem. Proof of part b of the theorem. Following the general scheme one can show lim T →∞ I 1 T = Z R d p 1 x|x| −α d x χ 1+ β Z R d Gϕ 1+ β yd y, lim T →∞ I 2 T = c β Z R d p 1 x|x| −α d x χ 2 Z R d ϕ yGϕ yd y, and 3.16 and 3.17 recall that c β is defined by 2.24. This is accomplished by an argument similar to the one used in part a. Due to the criticality γ = α, the integrals R T . . . ds in 3.9- 3.11 require a different treatment. They are split into R 1 . . . ds + R T 1 . . . ds; the first summand converges to zero, and in the second one we use the substitution s ′ = log s log T . Here, again, we use repeatedly the Lemma above together with the easily checked fact that sup T 2 1 log T Z R d Z T T s hx|x| −α dsd x ∞ for any integrable and bounded function h recall that d α. We omit details. Proof of part c of the theorem. Recall that the case γ d has been proved in [BGT6]. For α γ ≤ d we use the Lemma part c is particularly important. We show lim T →∞ I 1 T = Z R d GG ϕ 1+ β xµ γ d xχ 1+ β 0, lim T →∞ I 2 T = c β Z R d G ϕGϕxµ γ d xχ 2 0, 3.16 and 3.17. Here µ γ is either given by 1.8 or, for γ d one can take µ γ d x = |x| −γ d x. Again, the details are omitted.

3.8 Proof of Theorem 2.8

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52