Limit processes General kernel for PushASEP

2.4 Limit processes

For completeness, we shortly recall the definitions of the limit processes A 1 and A 2 appearing above. The notation Aix below stands for the classical Airy function [1]. Definition 2.3 The Airy 1 process . The Airy 1 process A 1 is the process with m-point joint distribu- tions at u 1 u 2 . . . u m given by the Fredholm determinant P m \ k=1 {A 1 u k ≤ s k } = det 1 − χ s K A 1 χ s L 2 {u 1 ,...,u m }× R , 2.24 where χ s u k , x = 1 x s k and the kernel K A 1 is given by K A 1 u 1 , s 1 ; u 2 , s 2 = − 1 p 4 πu 2 − u 1 exp ‚ − s 2 − s 1 2 4u 2 − u 1 Œ 1 u 2 u 1 +Ais 1 + s 2 + u 2 − u 1 2 exp u 2 − u 1 s 1 + s 2 + 2 3 u 2 − u 1 3 . 2.25 Definition 2.4 The Airy 2 process . The Airy 2 process A 2 is the process with m-point joint distribu- tions at u 1 u 2 . . . u m given by the Fredholm determinant P m \ k=1 {A 2 u k ≤ s k } = det 1 − χ s K A 1 χ s L 2 {u 1 ,...,u m }× R , 2.26 where χ s u k , x = 1 x s k and the kernel K A 2 is given by K A 2 u 1 , s 1 ; u 2 , s 2 =    R R + e −λu 2 −u 1 Ais 1 + λAis 2 + λ, u 2 ≥ u 1 , − R R − e −λu 2 −u 1 Ais 1 + λAis 2 + λ, u 2 u 1 . 2.27 3 Finite time kernel In this section we first derive an expression for the joint distributions of particle positions in a finite system. They are given by Fredholm determinants of a kernel, which is first stated for general jump rates and initial positions. After that, we specialize to the cases of uniform jump rates in the case of step and flat initial conditions. Flat initial conditions are obtained via a limit of finite systems.

3.1 General kernel for PushASEP

To state the following result, proven in Section 4, we introduce a space of functions V n . Consider the set of numbers {v 1 , . . . , v n } and let {u 1 u 2 . . . u ν } be their different values, with α k being the multiplicity of u k v k is the jump rate of particle with label k. Then we define the space V n = span{x l u x k , 1 ≤ k ≤ ν, 0 ≤ l ≤ α k − 1}. 3.1 Recall that the evolution of particle indexed by n is independent of the particles with index m n. 1388 Proposition 3.1. Consider a system of particles with indices n = 1, 2, . . . starting from positions y 1 y 2 . . .. Denote by x n t the position of particle with index n at time t. Then the joint distribution of particle positions is given by the Fredholm determinant P m \ k=1 {x n k t k ≥ s k } = det 1 − ˜ χ s K ˜ χ s ℓ 2 {n 1 ,t 1 ,...,n m ,t m }× Z 3.2 with n 1 , t 1 , . . . , n m , t m ∈ S , and ˜ χ s n k , t k x = 1 x s k . The kernel K is given by Kn 1 , t 1 , x 1 ; n 2 , t 2 , x 2 = −φ n 1 ,t 1 ,n 2 ,t 2 x 1 , x 2 + n 2 X k=1 Ψ n 1 ,t 1 n 1 −k x 1 Φ n 2 ,t 2 n 2 −k x 2 3.3 where Ψ n,t n −l x = 1 2 πi I Γ dzz x − y l −1 e at z+btz 1 − v 1 z · · · 1 − v n z 1 − v 1 z · · · 1 − v l z , l = 1, 2, . . . , 3.4 the functions {Φ n,t n −k } n k=1 are uniquely determined by the orthogonality relations X x ∈ Z Ψ n,t n −l xΦ n,t n −k x = δ k,l , 1 ≤ k, l ≤ n, 3.5 and by the requirement span {Φ n,t n −l x, l = 1, . . . , n} = V n . The first term in 3.3 is given by φ n 1 ,t 1 ,n 2 ,t 2 x, y = 1 2 πi I Γ dz z y −x+1 e at 1 −at 2 z e bt 1 −bt 2 z 1 − v n 1 +1 z · · · 1 − v n 2 z 1 [n 1 ,t 1 ≺n 2 ,t 2 ] . 3.6 The notation Γ stands for any anticlockwise oriented simple loop including only the pole at 0.

3.2 Kernel for step initial condition

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52