Kernel for step initial condition

Proposition 3.1. Consider a system of particles with indices n = 1, 2, . . . starting from positions y 1 y 2 . . .. Denote by x n t the position of particle with index n at time t. Then the joint distribution of particle positions is given by the Fredholm determinant P m \ k=1 {x n k t k ≥ s k } = det 1 − ˜ χ s K ˜ χ s ℓ 2 {n 1 ,t 1 ,...,n m ,t m }× Z 3.2 with n 1 , t 1 , . . . , n m , t m ∈ S , and ˜ χ s n k , t k x = 1 x s k . The kernel K is given by Kn 1 , t 1 , x 1 ; n 2 , t 2 , x 2 = −φ n 1 ,t 1 ,n 2 ,t 2 x 1 , x 2 + n 2 X k=1 Ψ n 1 ,t 1 n 1 −k x 1 Φ n 2 ,t 2 n 2 −k x 2 3.3 where Ψ n,t n −l x = 1 2 πi I Γ dzz x − y l −1 e at z+btz 1 − v 1 z · · · 1 − v n z 1 − v 1 z · · · 1 − v l z , l = 1, 2, . . . , 3.4 the functions {Φ n,t n −k } n k=1 are uniquely determined by the orthogonality relations X x ∈ Z Ψ n,t n −l xΦ n,t n −k x = δ k,l , 1 ≤ k, l ≤ n, 3.5 and by the requirement span {Φ n,t n −l x, l = 1, . . . , n} = V n . The first term in 3.3 is given by φ n 1 ,t 1 ,n 2 ,t 2 x, y = 1 2 πi I Γ dz z y −x+1 e at 1 −at 2 z e bt 1 −bt 2 z 1 − v n 1 +1 z · · · 1 − v n 2 z 1 [n 1 ,t 1 ≺n 2 ,t 2 ] . 3.6 The notation Γ stands for any anticlockwise oriented simple loop including only the pole at 0.

3.2 Kernel for step initial condition

We set all the jump rates to 1: v 1 = v 2 = · · · = 1. The transition function 3.6 does not depend on initial conditions. It is useful to rewrite it in a slightly different form. Lemma 3.2. The transition function can be rewritten as φ n 1 ,t 1 ,n 2 ,t 2 x, y 3.7 = 1 2 πi I Γ 0,1 dw 1 w x − y+1  w w − 1 ‹ n 2 −n 1 e at 1 w+bt 1 w e at 2 w+bt 2 w 1 [n 1 ,t 1 ≺n 2 ,t 2 ] . Proof of Lemma 3.2. The proof follows by the change of variable z = 1 w in 3.6. Lemma 3.3. Let y i = −i, i ≥ 1. Then, the functions Φ and Ψ are given by Ψ n,t k x = 1 2 πi I Γ 0,1 dw w − 1 k w x+n+1 e atw+bt w , Φ n,t j x = 1 2 πi I Γ 1 dz z x+n z − 1 j+1 e −atz−btz . 3.8 1389 Proof of Lemma 3.3. Ψ n,t k x comes from the change of variable z = 1w in 3.4. For k ≥ 0, the pole at w = 1 is irrelevant, but in the kernel Ψ n,t k enters also for negative values of k. We have to verify that the function Φ n,t j x satisfy the orthogonal condition 3.5 and span the space V n given in 3.1. For v 1 = · · · = v n = 1, V n = span1, x, . . . , x n −1 . By the residue’s theorem, the function Φ n,t j x is a polynomial of degree j in x. Thus, spanΦ n,t j x, j = 0, . . . , n − 1 = V n . The second step is to compute P x ∈ Z Φ n,t j xΨ n,t k x for 0 ≤ j, k ≤ n − 1. We divide it into the sum over x ≥ 0 and the one over x 0. We have X x ≥0 Φ n,t j xΨ n,t k x = X x ≥0 1 2πi 2 I Γ 1 dz I Γ dw e atw+bt w e atz+bt z w − 1 k z − 1 j+1 z x+n w x+n+1 . 3.9 We choose the paths Γ and Γ 1 satisfying |z| |w|, so that we can take the sum inside the integrals and use X x ≥0 z x w x+1 = 1 w − z , 3.10 to get 3.9 = 1 2πi 2 I Γ 1 dz I Γ 0,z dw e atw+bt w e atz+bt z w − 1 k z − 1 j+1 z n w n 1 w − z , 3.11 where the subscript z in Γ 0,z reminds that z is a pole for the integral over w. Next consider the sum over x 0. We have X x Φ n,t j xΨ n,t k x = X x 1 2πi 2 I Γ dw I Γ 1 dz e atw+bt w e atz+bt z w − 1 k z − 1 j+1 z x+n w x+n+1 . 3.12 This time we choose the paths Γ and Γ 1 satisfying |z| |w| and then take the sum inside the integrals. Using X x z x w x+1 = − 1 w − z 3.13 we obtain 3.12 = − 1 2πi 2 I Γ dw I Γ 1,w dz e atw+bt w e atz+bt z w − 1 k z − 1 j+1 z n w n 1 w − z , 3.14 where now w is a pole for the integral over z. Thus, X x ∈ Z Φ n,t j xΨ n,t k x = 3.11 + 3.14. 3.15 We can deform the paths of integration in 3.14 so that they become as the integration paths of 3.11 up to correcting the contribution of the residue at z = w. Thus we finally get, for 0 ≤ j, k ≤ n − 1, X x ∈ Z Φ n,t j xΨ n,t k x = 1 2 πi I Γ 1 dzz − 1 k − j−1 = δ j,k . 3.16 As a side remark, the same computations would not hold for k, j 0, for which Φ n,t j x ≡ 0, because it is not possible to choose the paths with |z| |w| without introducing an extra pole at z = 0. 1390 Proposition 3.4 Step initial condition, finite time kernel. The kernel for y i = −i, i ≥ 1, is given by Kn 1 , t 1 , x 1 ; n 2 , t 2 , x 2 3.17 = − 1 2 πi I Γ dw 1 w x 1 −x 2 +1  w 1 − w ‹ n 2 −n 1 e at 1 w+bt 1 w e at 2 w+bt 2 w 1 [n 1 ,t 1 ≺n 2 ,t 2 ] + 1 2πi 2 I Γ dw I Γ 1 dz e bt 1 w+at 1 w e bt 2 z+at 2 z 1 − w n 1 w x 1 +n 1 +1 z x 2 +n 2 1 − z n 2 1 w − z . The contours Γ and Γ 1 include the poles w = 0 and z = 1 and no other poles. This means in particular that Γ and Γ 1 are disjoints, because of the term 1 w − z. Proof of Proposition 3.4. Consider the main term of the kernel, namely n 2 X k=1 Ψ n 1 ,t 1 n 1 −k x 1 Φ n 2 ,t 2 n 2 −k x 2 = n 2 X k=1 1 2 πi I Γ 0,1 dw w − 1 n 1 −k w x 1 +n 1 +1 e at 1 w+bt 1 w × 1 2 πi I Γ 1 dz z x 2 +n 2 z − 1 n 2 −k+1 e −at 2 z−bt 2 z . 3.18 First we extend the sum to + ∞, since the second term is identically equal to zero for k n 2 . We choose the integration paths so that |z − 1| |w − 1|. Then, we can take the sum inside the integral. The k-dependent terms are X k ≥1 z − 1 k −1 w − 1 k = 1 w − z . 3.19 Thus, we get 3.18 = 1 2πi 2 I Γ 1 dz I Γ 0,z dw e at 1 w+bt 1 w e at 2 z+bt 2 z w − 1 n 1 w x 1 +n 1 +1 z x 2 +n 2 z − 1 n 2 1 w − z . 3.20 Notice now we have a new pole at w = z, but the one at w = 1 vanished. The contribution of the pole at w = z is exactly equal to the contribution of the pole at z = 1 in the transition function 3.7. Therefore in the final result the first term coming from 3.7 has the integral only around z = 0, and the second term is 3.20 but with the integral over w only around the pole at w = 0 and does not contain z. Finally, a conjugation by a factor −1 n 1 −n 2 gives the final result.

3.3 Kernel for flat initial condition

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52