Introduction Ion Anca Veronica. 142KB Jun 04 2011 12:09:03 AM

Mathematics and Informatics - ICTAMI 2004, Thessaloniki, Greece 235 ON THE BAUTIN BIFURCATION FOR SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS by Anca–Veronica Ion Abstract . For systems of delay differential equations the Hopf bifurcation was investigated by several authors. The problem we solve here is that of the possibility of emergence of a codimension two bifurcation, namely the Bautin bifurcation, for some such systems. Keywords : bifurcation theory, Bautin, delay differential equation

1. Introduction

The existence of periodic solutions for evolution equations is of certain interest for both pure and applied mathematicians. Even for bidimensional systems of differential equations the detection of limit cycles by theoretical means is difficult. The bifurcation theory offers a strong tool for finding limit cycles, namely the theory concerning the Hopf bifurcation when there is a varying parameter[2], [6]. Several authors studied the Hopf bifurcation for delay differential equations e.g. [4], [7], [1], [5] . We are interested to find sufficient conditions for the Bautin bifurcation for a class of such systems. 2. Setting of the problem, theoretical frame Consider a system of the form α α α , , r t x t x f r t x B t x A t x − + − + = • , 1 [ ] , , r s s s x − ∈ = φ , 2 where n n x x x R ∈ = ,..., 1 , 2 R ∈ = 2 1 , α α α , , α α B A are nxn matrices over R , n f f f ..., , 1 = is continuously differentiable on its domain of definition, 1 2 + ⊂ n D R . Moreover, , , = α f and the differential of f in the first two vectorial variables, calculated at α , , is equal to zero. φ is an element of the Banach space [ ] n r C R , , B − = column vectors. In order to write eq. 1 as a differential equation in a Banach space, the space [ ] [ { } n n R R ∈ ∃ → − = → lim and r, - on continuous is , , : B - s s r ψ ψ ψ differential equations 236 is considered in section 8.2 of [4]. Its elements are σ ϕ ψ X + = , with n R ∈ ∈ σ ϕ B, column vector and    = ≤ − = , , , s I s r s X n where 0, n I are the zero and, respectively, the unity nxn matrix. The norm of ψ is defined as the sum of the norm of ϕ in B and the norm of σ in n R . The complexifications C B , C B of B , respectively B , are used below. Consider ⋅ δ - the Dirac function, and the nxn matrix valued function n I s s δ = ∆ . Also consider the bounded linear operator n R → B : α L , ∫ − = r s s d L ϕ η ϕ α α , with r s B s A s + ∆ − ∆ = α α η α . By denoting [ ] . , , r s s t x s x t − ∈ + = , we have in the spirit of [4], the following relations, equivalent with 1, 2: , , , α α r x x f x L dt dx t t t t − + = 3 , s ds dx s dt dx t t = 4 . ϕ = x 5 Define see also [4] the linear operator, , ~     − + = • • ϕ ϕ ϕ ϕ α α L X A [ ] BC BC r C A n → ⊂ − R , , : 1 ~ α . Now we can rewrite the above problem as , , , ~ α α r x x f X x A dt dx t t t t − + = , 6 . ϕ = x 7 The last term of 6 may be written as ∫ ∫ − − + ∆ ∆ , , r t r t s x r s d s x s d f X α . We define ∫ ∫ − − + ∆ ∆ = , , , r t r t t s x r s d s x s d f x F α α . Thus 6 and 7 take the form , , ~ α α t t t x F X x A dt dx + = 8 differential equations 237 ϕ = x , 9 this being the abstract problem in B equivalent to 1,2. The eigenvalues of α ~ A are see [4] the roots of the equation det = − − − α α λ λ B e A I r . We assume the following hypothesis, that we denote H1. H1. An open set U exists in the parameter plane such that for every U ∈ α , there is a pair of complex conjugated simple eigenvalues α ω α µ α λ i ± = 2 , 1 , with the property that there is a U ∈ α such that 2 , 1 ω α ω α λ i i ± = ± = , with ω and for every U ∈ α , all other eigenvalues have strictly negative real parts, uniformly bounded from above by a negative number. By a simple eigenvalue we mean an eigenvalue having the algebraic multiplicity equal to 1. We remark that H1 implies the existence of a neighborhood of α such that each eigenvalue different from α λ 2 , 1 has real part strictly less than α µ . The eigenvectors corresponding to α λ i , i=1,2, are elements of C B -the complexification of B , namely [ ] , , r s e s i s i i − ∈ = α ϕ α ϕ α λ , where α ϕ i is a solution of = − − − ϕ α α α λ α λ B e A I r i i . Obviously, 1 2 α ϕ α ϕ = . Denote by { } α λ 2 , 1 M the linear subspace of C B , spanned by { α ϕ α ϕ 2 1 , } and α Φ the matrix having as columns the vectors α ϕ α ϕ 2 1 , . Let { α ψ α ψ 2 1 , } be two eigenvectors for the adjoint problem [3], [4], corresponding to the eigenvalues α λ 2 , 1 − of the infinitesimal generator of the adjoint problem. They are elements of C B - the complexification of [ ] n r C R , , B = -row vectors, and we assume that they are selected such that, α Ψ being the matrix having as rows the vectors α ψ α ψ 2 1 , , the relation 2 , I = Φ Ψ α α holds, where C → × ⋅ ⋅ C C B B : , is defined by differential equations 238 . B , B , , C C ∈ ∈ − − = ∫∫ − ϕ ψ ξ ξ ϕ θ η θ ξ ψ ϕ ψ ϕ ψ θ α r d d In [4] a projection { } α λ π 2 , 1 0C B : M → , is defined by [ ] α ϕ α α α ϕ π , Ψ + Ψ Φ = + X . With this projection the space 0C B is decomposed as { } π α λ Ker B 2 , 1 0C ⊕ = M . Since the solution t x of 8 and 9 belongs to ], , [ 1 n R r C − , it is decomposed as t y t u x t + Φ = α , 10 with t x t u , α Ψ = and t x I t y π − = , where , _ t z t z t u = -column vector, C ∈ t z . Let us define     = 1 1 α λ α λ α B . The projection of eq. 8 on { } α λ 2 , 1 M is , α α α α α α α t y t u F u B u + Φ Ψ Φ + Φ = Φ • , and since α Φ is invertible, this is equivalent to , α α α α t y t u F u B u + Φ Ψ + = • . 11 By projecting the initial condition we find ϕ α, Ψ = u .

3. Existence of the invariant manifold and the restricted equation If

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52