Existence of the invariant manifold and the restricted equation If The equations for the invariant manifold

differential equations 238 . B , B , , C C ∈ ∈ − − = ∫∫ − ϕ ψ ξ ξ ϕ θ η θ ξ ψ ϕ ψ ϕ ψ θ α r d d In [4] a projection { } α λ π 2 , 1 0C B : M → , is defined by [ ] α ϕ α α α ϕ π , Ψ + Ψ Φ = + X . With this projection the space 0C B is decomposed as { } π α λ Ker B 2 , 1 0C ⊕ = M . Since the solution t x of 8 and 9 belongs to ], , [ 1 n R r C − , it is decomposed as t y t u x t + Φ = α , 10 with t x t u , α Ψ = and t x I t y π − = , where , _ t z t z t u = -column vector, C ∈ t z . Let us define     = 1 1 α λ α λ α B . The projection of eq. 8 on { } α λ 2 , 1 M is , α α α α α α α t y t u F u B u + Φ Ψ Φ + Φ = Φ • , and since α Φ is invertible, this is equivalent to , α α α α t y t u F u B u + Φ Ψ + = • . 11 By projecting the initial condition we find ϕ α, Ψ = u .

3. Existence of the invariant manifold and the restricted equation If

{ } \ α α U ∈ , and Re 2 , 1 α λ then, since these are the only two eigenvalues with positive real part and they are simple, there is a local invariant manifold for the problem, namely the local unstable manifold, tangent to the space { } α λ 2 , 1 M , [3], [7]. For α α = , since Re 2 , 1 = α λ , there is a local invariant manifold for the problem, namely the local center manifold, tangent to the space { } 2 , 1 α λ M , [7]. Hence, for every U ∈ α with ≥ α µ , there is a neighborhood α V of ∈ B , and a local invariant manifold α α V W loc ⊂ , which is the differential equations 239 graph of a 1 C function. That is, the local invariant manifold may be expressed as { } { } α ϕ ϕ ϕ α α λ α V w W loc ∩ ∈ + = 2 , 1 ; M , where { } π α λ α Ker w → 2 , 1 : M is a 1 C function, , = α w and it has zero differential at 0. Since { } α λ ϕ 2 , 1 M ∈ , we have , 1 1 α ϕ α ϕ α ϕ z z + = with C ∈ z . This relation induces a dependence of z z , to ϕ α w that justifies the notation z z w w , α α ϕ = . Equation 11 implies α α ϕ α ϕ α ψ α λ α , , 1 1 1 1 t z t z w t z t z F t z t z + + + = • , 12 ϕ α ψ , 1 = z . 13 Let φ α t S be the solution of eq. 1 corresponding to the initial condition φ , at the moment t . If α φ loc W ∈ , then , 1 1 t z t z w t z t z t S α α α ϕ α ϕ φ + + = . 14 By using again the function f, 12 becomes , , 1 1 α φ φ α ψ α λ α α r t S t S f t z t z − + = • , 15 or, , , , 1 α α λ t z t z g t z t z + = • 16 by denoting , , , , 1 α φ φ α ψ α α α r t S t S f t z t z g − = . 17

4. The equations for the invariant manifold

The following proposition is a natural consequence of the invariance of α loc W . A similar result is given in [7], on the center manifold. We give the proof for the sake of completeness. Proposition 1. Let α φ loc W ∈ be the initial value for the problem 1. Then the function α w satisfies the following equations differential equations 240 [ ] , , , , , , , , , 1 1 r s s t z t z w s s t z t z g s t z t z g s t z t z w t − ∈ ∂ ∂ = = + + ∂ ∂ α α α ϕ α α ϕ α 18 , , , , , , , , , 2 1 α φ φ α α α ϕ α α ϕ α α α α α α r t S t S f r t z t z w B t z t z w A t z t z g t z t z g t z t z w t − + − + = = + + ∂ ∂ 19 with zt solution of the Cauchy problem 16,13 and g defined by 17. Proof Since α φ loc W ∈ and α loc W is invariant, α φ α loc W t S ∈ . Let us denote, for ≥ t and [ ] , r s − ∈ , s t x s t S + = φ φ α . Obviously s t s x s t t x + ∂ ∂ = + ∂ ∂ φ φ . This and 14 imply , , 1 1 1 1 s t z s t z s t z t z w s s t z s t z s t z t z w t α ϕ α ϕ α ϕ α ϕ α α • • • • + + ∂ ∂ = = + + ∂ ∂ 20 here 1 1 s ds d s α ϕ α ϕ = • and thus s t z t z w s s t z s t z s t z t z w t , , _ 1 1 1 1 _ α α α ϕ α λ α ϕ α λ ∂ ∂ =       − +     − + ∂ ∂ • • . 21 With 16 we obtain 18. On another side, since φ α t S is a solution of equation 1, we have , , , _ 1 1 s r t S s t S f s r t S B s t S A s t z t z w t s t z s t z φ φ φ α φ α α ϕ α ϕ α α α α α − + + − + = ∂ ∂ + + • • differential equations 241 and, by taking = s , we obtain 19. This proposition allows the determination of the coefficients of the series of powers in z and _ z of the function α w . Indeed, let us write , 1 , , 2 k j k j jk z z F k j r t S t S f ∑ ≥ + = − α α φ φ α α 22 k j k j jk z z g k j t z t z g ∑ ≥ + = 2 1 , , α α , k j k j jk z z w k j z z w ∑ ≥ + = 2 , 1 , , α θ θ α 23 where 1 α ψ α jk jk F g = . By replacing 22 and 23 in 18 and by matching the obtained series, we get first order linear differential equations for jk w . Thus, equation 18 implies . , 1 1 1 , 1 1 1 2 1 2 1 2 2     + +     + +     = • − • − ≥ + ≥ + ≥ + ≥ + ∑ ∑ ∑ ∑ z z kz z z jz s w k j s z z g k j s z z g k j z z s w ds d k j k j k j k j jk k j k j jk k j k j jk k j k j jk α α ϕ α α ϕ α α 24 In this equality • z and • z will be replaced with the right hand side of 16 to obtain . 1 1 , 1 , 1 1 1 , 1 2 _ 1 2 1 2 1 1 2 1 2 1 2 2           +       + + + +     + +     = ∑ ∑ ∑ ∑ ∑ ∑ ∑ ≥ + − ≥ + − ≥ + ≥ + ≥ + ≥ + ≥ + m l m l lm k j m l m l lm k j k j jk k j k j jk k j k j jk k j k j jk k j k j jk z z g m l z kz z z g m l z jz s w k j z z k j s w k j s z z g k j s z z g k j z z s w ds d k j α α α α λ α λ α α ϕ α α ϕ α α 25 By matching the same order terms we obtain first order differential equations for , . α jk w . A relation similar to 25 is obtained by substituting the series 22, 23 in 19, and by using 16 : differential equations 242 . 1 , 1 , 1 1 1 1 1 , 1 , 1 2 2 2 1 2 1 2 2 _ 1 2 1 2 1 1 2 k j k j jk k j k j jk k j k j jk k j k j jk k j k j jk m l m l lm k j m l m l lm k j k j jk k j k j jk z z F k j z z r w k j B z z w k j A z z g k j z z g k j z z g m l z kz z z g m l z jz w k j z z k j w k j ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ≥ + ≥ + ≥ + ≥ + ≥ + ≥ + − ≥ + − ≥ + ≥ + + − + = =     +     + +           +       + + + α α α α α α ϕ α α ϕ α α α α α λ α λ α 26 The relations obtained by equating the terms with similar powers of z, _ z in 26 are used as conditions to determine the constants that appear in the general form of jk w obtained above. In this theoretical form the calculus is very lengthy and we do not make it explicitly here. We firstly remark that the coefficients of the second order terms in z and _ z in the expansion of , , α φ φ α α r t S t S f i − , n i ,..., 1 = , are independent on those of α w , they depend only on the coefficients of the Taylor series of α , , y x f i . The similar assertion holds for the coefficients of , , α t z t z g . Hence α α α 02 11 20 , , g g g are known, given i f and α ψ 1 . The following algorithm to determine α jk w must be used. - α α α 02 11 20 , , w w w are determined from the equations obtained by identifying the terms containing 2 2 , , z z z z respectively, in 25, with initial conditions obtained by the same method from 26; they depend on α α α 02 11 20 , , g g g . - α α α 02 11 20 , , w w w are used to compute α jk g , j+k=3, from 14, 17, 23 . - α jk w , j+k=3, are determined from the equations 25 and conditions 26; they depend on 3 , ≤ + k j g jk α . differential equations 243 - 3 , ≤ + k j w jk α are used to compute α jk g , j+k=4 from 14, 17, 23 . - α jk w , j+k=4, are determined from the equations 25 and conditions 26; they depend on 4 , ≤ + k j g jk α . - 4 , ≤ + k j w jk α are used to compute α jk g , j+k=5. We do not need so many terms to have an accurate form of the invariant manifold, but we need them in order to discuss the behaviour of the solution z of 16 that determines the solution of 1 on the invariant manifold.

5. The Bautin bifurcation

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52