72 H
. De Wolf et al. J. Exp. Mar. Biol. Ecol. 246 2000 69 –83
HW equilibrium conditions were tested with exact probability tests, implemented by the GENEPOP software v. 1.1 Raymond and Rousset, 1995, which applies the Markov
chain method proposed by Guo and Thompson 1992. Interarchipelago differences in MNA or H
were investigated by means of two
obs
analyses of variance, using the software package STATISTICA v. 5.0 Statsoft, 1995. Genetic population differentiation can be expressed by means of hierarchical F-
statistics. When a hierarchical arrangement of populations is assumed, in this case populations P being placed within islands I, archipelagos A and total distribution
area T, the variance of the observed genetic differentiation among the populations var
can be split up into its variance components. A series of F-statistics can be
ST
obtained e.g., F , F , F and F
, of which the terms in the following equation
PI IA
PT AT
1 2 F 5 1 2 F ? 1 2 F ? 1 2 F
PT PI
IA AT
represent respectively: total differentiation, differentiation among populations within islands, differentiation among islands within archipelagos, and differentiation among
archipelagos. These F-values are not additive. Hence, F reflects only the additional
IA
variance among islands beyond that which exists among populations, and F reflects
AT
only additional variance among archipelagos beyond that which exists among islands Wolf and Campbell, 1995. F-values and corresponding variance components were
calculated with the WRIGHT78 option in BIOSYS Swofford and Selander, 1989. Allele frequency heterogeneities among the four archipelagos, were evaluated with
Fisher exact tests applied to R 3C contingency tables as implemented by the GENEPOP
v. 1.1 software Raymond and Rousset, 1995. The differentiation among islands was further analyzed by means of correspondence
analysis, executed with the NTSYS v. 1.80 software Rohlf, 1993. Gene flow Nm among archipelagos was estimated using private allele frequencies
Slatkin, 1985; Slatkin and Barton, 1989. Pairwise Nm values were plotted against pairwise geographical distances, enabling us to calculate the correlation coefficient and
corresponding regression equation. A significance level of 5 was used throughout. The sequential Bonferroni technique
was employed to correct for false assignments of significance by chance alone multiple test problems Rice, 1989.
3. Results
Allele frequencies, H , H
, and the results of the HW-tests are given in Table 2.
obs exp
Six deviations from HW equilibrium were detected, yet none of these remained significant after Bonferroni correction. Eight alleles were unique to the CV archipelago
GPI-G, MPI-F, PGD-B, PGD-F, MDH-B, MDH-C, MDH-E and HBDH-F and two alleles were unique to the AZ MDH-A, HBDH-A. Private allele frequencies used for
estimating Nm among archipelagos are given in Table 4 below.
MNA differed among the four archipelagos, with CV appearing genetically more diverse overall MNA
54.2, than the other archipelagos overall MNA53.2 Fig. 1.
H . De Wolf et al. J. Exp. Mar. Biol. Ecol. 246 2000 69 –83
73 Table 2
Allele frequencies, observed H and expected H
heterozygosity levels and exact probabilities P-ext
obs exp
for deviation of Hardy–Weinberg equilibria population abbreviations see Table 1 Locus
AZ1 AZ2
AZ3 AZ4
AZ5 AZ6
AZ7 AZ8
AZ9 AZ10
GPI N
38 37
37 38
38 40
37 34
39 36
A 0.026
0.014 0.014
0.013 0.026
0.013 0.027
0.029 0.000
0.014 B
0.303 0.297
0.284 0.434
0.237 0.325
0.297 0.309
0.244 0.236
C 0.039
0.000 0.000
0.013 0.079
0.000 0.000
0.015 0.077
0.069 D
0.593 0.689
0.688 0.514
0.632 0.612
0.622 0.544
0.653 0.653
E 0.000
0.000 0.000
0.000 0.013
0.000 0.000
0.000 0.000
0.000 F
0.039 0.000
0.014 0.026
0.013 0.050
0.054 0.103
0.026 0.028
G 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 H
0.711 0.297
0.405 0.474
0.474 0.475
0.432 0.588
0.333 0.556
obs
H 0.554
0.436 0.444
0.547 0.538
0.517 0.522
0.597 0.507
0.512
exp
P-ext 0.065
0.044 0.729
0.711 0.061
0.743 0.501
0.910 0.001
0.341 MPI
N 39
40 40
32 38
40 40
39 37
40 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
B 0.051
0.138 0.125
0.094 0.053
0.075 0.087
0.115 0.108
0.075 C
0.949 0.862
0.875 0.906
0.947 0.912
0.913 0.885
0.892 0.912
D 0.000
0.000 0.000
0.000 0.000
0.013 0.000
0.000 0.000
0.013 E
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
F 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 H
0.103 0.225
0.200 0.188
0.105 0.150
0.175 0.231
0.216 0.175
obs
H 0.097
0.237 0.219
0.170 0.100
0.162 0.160
0.204 0.193
0.162
exp
P-ext 1.000
0.548 0.473
1.000 1.000
0.083 1.000
1.000 1.000
1.000 PGD
N 38
38 39
37 37
38 34
35 34
37 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
B 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 C
1.000 0.974
1.000 0.946
0.986 0.974
0.971 0.977
0.956 1.000
D 0.000
0.026 0.000
0.027 0.014
0.000 0.000
0.000 0.029
0.000 E
0.000 0.000
0.000 0.027
0.000 0.026
0.029 0.043
0.015 0.000
F 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 H
– 0.053
– 0.054
0.027 0.053
0.059 0.086
0.088 –
obs
H –
0.051 –
0.102 0.027
0.051 0.057
0.082 0.085
–
exp
P-ext –
1.000 –
0.028 –
1.000 1.000
1.000 1.000
– MDH
N 40
37 39
37 40
39 36
37 37
40 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.014
0.000 0.000
B 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 C
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
D 1.000
1.000 1.000
1.000 1.000
1.000 1.000
0.986 1.000
1.000 E
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
H –
– –
– –
– –
0.027 –
–
obs
H –
– –
– –
– –
0.027 –
–
exp
P-ext –
– –
– –
– –
– –
– HBDH
N 36
40 40
39 37
38 36
35 40
40 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
B 0.000
0.038 0.025
0.013 0.027
0.013 0.042
0.014 0.025
0.000 C
0.986 0.899
0.899 0.884
0.865 0.961
0.902 0.986
0.962 0.949
D 0.014
0.000 0.013
0.026 0.027
0.000 0.014
0.000 0.000
0.013 E
0.000 0.063
0.063 0.077
0.081 0.026
0.042 0.000
0.013 0.038
F 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 H
0.028 0.200
0.200 0.231
0.270 0.079
0.194 0.029
0.075 0.100
obs
H 0.027
0.185 0.185
0.211 0.244
0.077 0.181
0.028 0.073
0.096
exp
P-ext –
1.000 1.000
1.000 1.000
1.000 1.000
– 1.000
1.000
74 H
. De Wolf et al. J. Exp. Mar. Biol. Ecol. 246 2000 69 –83 Table 2. Continued
Locus AZ11
AZ12 AZ13
AZ14 AZ15
AZ16 AZ17
AZ18 AZ19
AZ20 GPI
N 36
36 35
39 36
39 28
39 40
37 A
0.014 0.014
0.014 0.013
0.000 0.013
0.000 0.000
0.000 0.027
B 0.236
0.333 0.400
0.321 0.375
0.204 0.393
0.372 0.250
0.284 C
0.014 0.042
0.014 0.013
0.028 0.026
0.000 0.026
0.013 0.027
D 0.708
0.541 0.543
0.601 0.583
0.731 0.589
0.538 0.674
0.648 E
0.014 0.028
0.000 0.026
0.000 0.000
0.000 0.013
0.000 0.000
F 0.014
0.042 0.029
0.026 0.014
0.026 0.018
0.051 0.063
0.014 G
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
H 0.500
0.528 0.514
0.436 0.500
0.487 0.393
0.538 0.375
0.486
obs
H 0.442
0.591 0.544
0.533 0.518
0.422 0.498
0.568 0.478
0.497
exp
P-ext 0.664
0.028 0.430
0.537 0.736
0.926 0.234
0.769 0.280
0.592 MPI
N 39
38 37
39 40
33 38
40 39
38 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
B 0.115
0.132 0.108
0.128 0.063
0.106 0.132
0.063 0.141
0.158 C
0.885 0.868
0.892 0.872
0.937 0.894
0.868 0.932
0.846 0.842
D 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.013
0.000 E
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
F 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 H
0.231 0.211
0.162 0.256
0.075 0.212
0.211 0.125
0.231 0.263
obs
H 0.204
0.229 0.193
0.224 0.117
0.190 0.229
0.117 0.264
0.266
exp
P-ext 1.000
0.493 0.344
1.000 0.124
1.000 0.493
1.000 0.084
1.000 PGD
N 34
37 33
37 40
39 38
39 36
36 A
0.000 0.014
0.000 0.014
0.000 0.000
0.000 0.000
0.000 0.000
B 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 C
0.985 0.959
0.955 0.958
0.937 0.987
0.961 0.962
0.988 0.988
D 0.000
0.000 0.000
0.014 0.000
0.013 0.000
0.038 0.014
0.000 E
0.015 0.027
0.045 0.014
0.063 0.000
0.039 0.000
0.028 0.042
F 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 H
0.029 0.081
0.091 0.081
0.125 0.026
0.079 0.077
0.083 0.083
obs
H 0.029
0.079 0.087
0.079 0.117
0.025 0.076
0.074 0.081
0.080
exp
P-ext –
1.000 1.000
1.000 1.000
– 1.000
1.000 1.000
1.000 MDH
N 40
39 33
39 40
39 38
39 40
38 A
0.000 0.013
0.000 0.013
0.000 0.000
0.013 0.000
0.000 0.000
B 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 C
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
D 1.000
0.987 1.000
0.987 1.000
1.000 0.987
1.000 1.000
1.000 E
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
H –
0.026 –
0.026 –
– 0.026
– –
–
obs
H –
0.025 –
0.025 –
– 0.026
– –
–
exp
P-ext –
1.000 –
1.000 –
– 1.000
– –
– HBDH
N 40
39 35
40 37
40 35
38 39
38 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.013 0.000
B 0.000
0.026 0.014
0.050 0.014
0.025 0.014
0.079 0.038
0.026 C
0.912 0.846
0.972 0.900
0.918 0.949
0.943 0.895
0.898 0.882
D 0.025
0.013 0.000
0.025 0.027
0.013 0.014
0.000 0.000
0.039 E
0.063 0.115
0.014 0.025
0.041 0.013
0.029 0.026
0.051 0.053
F 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 H
0.125 0.256
0.057 0.200
0.162 0.100
0.114 0.211
0.205 0.237
obs
H 0.163
0.270 0.056
0.186 0.153
0.097 0.110
0.193 0.190
0.218
exp
P-ext 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000
H . De Wolf et al. J. Exp. Mar. Biol. Ecol. 246 2000 69 –83
75 Table 2. Continued
Locus MA1
MA2 MA3
MA4 CA1
CA2 CA3
CA4 CA5
CA6 GPI
N 34
37 37
36 40
38 40
19 39
38 A
0.000 0.000
0.000 0.014
0.013 0.013
0.013 0.000
0.013 0.026
B 0.147
0.257 0.324
0.305 0.262
0.435 0.312
0.368 0.231
0.275 C
0.059 0.041
0.081 0.028
0.000 0.026
0.013 0.000
0.077 0.053
D 0.720
0.648 0.567
0.611 0.712
0.500 0.637
0.605 0.628
0.632 E
0.015 0.000
0.014 0.000
0.000 0.000
0.000 0.026
0.013 0.000
F 0.059
0.054 0.014
0.042 0.013
0.026 0.025
0.000 0.038
0.014 G
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
H 0.441
0.378 0.514
0.556 0.400
0.605 0.400
0.684 0.564
0.553
obs
H 0.452
0.509 0.566
0.530 0.423
0.560 0.495
0.497 0.544
0.521
exp
P-ext 0.692
0.017 0.141
0.785 0.408
0.801 0.436
0.221 0.698
0.568 MPI
N 40
40 40
40 39
40 37
20 40
37 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
B 0.087
0.112 0.100
0.063 0.103
0.075 0.095
0.075 0.075
0.176 C
0.913 0.888
0.900 0.937
0.897 0.912
0.905 0.925
0.925 0.824
D 0.000
0.000 0.000
0.000 0.000
0.013 0.000
0.000 0.000
0.000 E
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
F 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 H
0.125 0.225
0.200 0.125
0.154 0.175
0.189 0.150
0.150 0.297
obs
H 0.160
0.200 0.180
0.117 0.184
0.162 0.171
0.138 0.139
0.290
exp
P-ext 0.249
1.000 1.000
1.000 0.328
1.000 1.000
1.000 1.000
1.000 PGD
N 36
35 34
30 37
34 37
20 38
37 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
B 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 C
0.958 0.957
0.926 0.884
0.986 0.975
0.932 0.950
0.961 0.918
D 0.042
0.029 0.059
0.083 0.000
0.000 0.027
0.025 0.000
0.014 E
0.000 0.014
0.015 0.033
0.014 0.015
0.041 0.025
0.039 0.068
F 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 H
0.083 0.086
0.147 0.233
0.027 0.059
0.135 0.100
0.079 0.162
obs
H 0.080
0.083 0.138
0.212 0.027
0.058 0.126
0.096 0.076
0.151
exp
P-ext 1.000
1.000 1.000
1.000 –
1.000 1.000
1.000 1.000
1.000 MDH
N 40
38 40
36 35
38 40
20 37
34 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
B 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 C
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
D 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 E
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
H –
– –
– –
– –
– –
–
obs
H –
– –
– –
– –
– –
–
exp
P-ext –
– –
– –
– –
– –
– HBDH
N 38
37 39
27 37
36 40
20 38
15 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
B 0.026
0.014 0.038
0.019 0.014
0.014 0.013
0.000 0.026
0.033 C
0.882 0.905
0.872 0.944
0.932 0.916
0.862 0.925
0.908 0.901
D 0.000
0.027 0.013
0.000 0.000
0.014 0.025
0.025 0.013
0.033 E
0.092 0.054
0.077 0.037
0.054 0.056
0.100 0.050
0.053 0.033
F 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 H
0.237 0.189
0.256 0.111
0.135 0.167
0.225 0.150
0.158 0.200
obs
H 0.214
0.176 0.232
0.106 0.127
0.156 0.245
0.141 0.172
0.187
exp
P-ext 1.000
1.000 1.000
1.000 1.000
1.000 0.548
1.000 0.261
1.000
76 H
. De Wolf et al. J. Exp. Mar. Biol. Ecol. 246 2000 69 –83 Table 2. Continued
Locus CV1
CV2 CV3
CV4 CV5
CV6 CV7
CV8 CV9
CV10 CV11
CV12 GPI
N 38
38 40
40 40
39 40
39 40
40 40
34 A
0.026 0.039
0.038 0.025
0.013 0.013
0.038 0.026
0.025 0.038
0.025 0.015
B 0.316
0.158 0.273
0.274 0.200
0.244 0.400
0.474 0.325
0.250 0.450
0.397 C
0.026 0.132
0.013 0.000
0.050 0.038
0.000 0.026
0.000 0.000
0.000 0.015
D 0.566
0.579 0.613
0.650 0.652
0.615 0.562
0.397 0.550
0.612 0.474
0.544 E
0.013 0.066
0.025 0.013
0.050 0.064
0.000 0.026
0.025 0.000
0.013 0.000
F 0.053
0.013 0.038
0.038 0.025
0.013 0.000
0.051 0.075
0.075 0.038
0.029 G
0.000 0.013
0.000 0.000
0.013 0.013
0.000 0.000
0.000 0.025
0.000 0.000
H 0.605
0.533 0.475
0.575 0.500
0.462 0.425
0.641 0.550
0.550 0.575
0.353
obs
H 0.576
0.616 0.546
0.500 0.532
0.556 0.522
0.621 0.585
0.555 0.570
0.553
exp
P-ext 0.046
0.311 0.338
0.101 0.156
0.196 0.179
0.106 0.789
0.669 1.000
0.003 MPI
N 33
37 36
38 40
39 40
40 38
40 40
40 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
B 0.076
0.054 0.056
0.053 0.138
0.115 0.038
0.063 0.066
0.125 0.075
0.125 C
0.924 0.946
0.944 0.947
0.862 0.885
0.962 0.925
0.934 0.875
0.913 0.875
D 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.013
0.000 E
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
F 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.013 0.000
0.000 0.000
0.000 H
0.091 0.108
0.111 0.105
0.175 0.231
0.075 0.150
0.132 0.200
0.175 0.250
obs
H 0.140
0.102 0.105
0.100 0.237
0.204 0.072
0.140 0.123
0.219 0.162
0.219
exp
P-ext 0.150
1.000 1.000
1.000 0.134
1.000 1.000
1.000 1.000
0.473 1.000
1.000 PGD
N 39
39 40
37 33
39 40
37 38
39 40
39 A
0.000 0.013
0.013 0.014
0.000 0.000
0.000 0.000
0.000 0.000
0.013 0.000
B 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.026 C
0.923 0.923
0.961 0.904
0.970 1.000
0.925 0.878
0.881 0.911
0.974 0.910
D 0.000
0.000 0.000
0.041 0.015
0.000 0.000
0.027 0.066
0.000 0.000
0.013 E
0.026 0.013
0.013 0.041
0.015 0.000
0.025 0.041
0.000 0.038
0.013 0.051
F 0.051
0.051 0.013
0.000 0.000
0.000 0.050
0.054 0.053
0.051 0.000
0.000 H
0.103 0.154
0.075 0.135
0.061 –
0.150 0.135
0.184 0.179
0.050 0.154
obs
H 0.145
0.145 0.073
0.177 0.059
– 0.141
0.223 0.216
0.167 0.049
0.168
exp
P-ext 0.091
1.000 1.000
0.161 1.000
– 1.000
0.001 0.219
1.000 1.000
0.255 MDH
N 40
39 40
40 40
39 40
40 40
40 40
40 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
B 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.013 0.000
0.000 0.000
0.000 C
0.000 0.000
0.000 0.013
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
D 1.000
1.000 1.000
0.987 1.000
1.000 1.000
0.987 1.000
1.000 1.000
1.000 E
0.000 0.000
0.000 0.000
0.013 0.000
0.000 0.000
0.000 0.000
0.000 0.000
H –
– –
0.025 0.025
– –
0.025 –
– –
–
obs
H –
– –
0.025 0.025
– –
0.025 –
– –
–
exp
P-ext –
– –
1.000 1.000
– –
1.000 –
– –
– HBDH
N 39
39 39
33 39
39 40
39 40
40 39
39 A
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
B 0.013
0.026 0.013
0.000 0.000
0.013 0.000
0.038 0.038
0.038 0.038
0.000 C
0.936 0.897
0.949 0.879
0.936 0.936
0.899 0.885
0.875 0.997
0.885 0.897
D 0.000
0.000 0.000
0.015 0.000
0.013 0.038
0.000 0.000
0.000 0.000
0.013 E
0.051 0.077
0.038 0.106
0.051 0.038
0.050 0.064
0.087 0.050
0.064 0.077
F 0.000
0.000 0.000
0.000 0.013
0.000 0.013
0.013 0.000
0.025 0.013
0.013 H
0.128 0.154
0.103 0.242
0.128 0.128
0.200 0.179
0.200 0.175
0.231 0.154
obs
H 0.121
0.188 0.098
0.216 0.121
0.122 0.186
0.212 0.225
0.208 0.212
0.188
exp
P-ext 1.000
0.328 1.000
1.000 1.000
1.000 1.000
0.046 0.047
0.208 1.000
0.328
H . De Wolf et al. J. Exp. Mar. Biol. Ecol. 246 2000 69 –83
77
Fig. 1. Graphical representation of mean number of alleles per locus at each of the four archipelagos AZ
5Azores; MA5Madeira; CA5Canary Islands; CV5Cape Verde Islands.
This difference was nearly significant P 50.0507 and therefore indicated a ‘‘ten-
dency’’. In contrast, H did not differ significantly among the four archipelagos
obs
P 50.4826. All F indices were small, indicating no population differentiation at any
xy
of the three analysed hierarchical levels i.e. F 50.005; F 50.002; F ,0.001.
PI IA
AT
After Bonferroni correction, eight significant allele frequency heterogeneities were detected when the archipelagos were compared: three i.e. GPI, PGD, HBDH among
CV and AZ, two i.e. GPI, PGD among CV and MA, one i.e. PGD among CV and CA, one i.e. PGD among MA and CA, and one among AZ and MA i.e. PGD Table
3.
The first axis of the correspondence analysis, which explained 33.19 of the variation, separated the CV from the remaining Macaronesian Islands. This axis mainly
Table 3
a
Exact tests of allele frequency heterogeneities, according to Guo and Thompson 1992 GPI
MPI PGD
MDH HBDH
AZ–MA 0.05076
0.79000 0.00036
1.00000 0.42472
AZ–CA 0.84836
1.00000 0.27278
0.58522 0.41846
AZ–CV 0.00001
0.05454 0.00001
0.03950 0.00046
MA–CA 0.13578
0.84030 0.00102
– 0.79490
MA–CV 0.00136
0.71848 0.00026
1.00000 0.55006
CA–CV 0.02208
0.27440 0.00182
1.00000 0.26526
Significant after sequential Bonferroni correction.
a
AZ 5Azores; MA5Madeira; CA5Canary Islands; CV5Cape Verde Islands.
78 H
. De Wolf et al. J. Exp. Mar. Biol. Ecol. 246 2000 69 –83
Fig. 2. Regression analysis of pairwise Nm estimates against pairwise geographical distances.
expressed effects of PGD-F, GPI-A, GPI-E, and GPI-G. The second factor discriminated the MA from the other archipelagos, mainly on the basis of PGD-D and GPI-C. This
factor explained only an additional 18.14 of the variation making it less informative. Both the regression analysis among pairwise Nm values and geographic distances
Fig. 2 as well as a plot of private alleles based gene flow estimates on a geographic map of Macaronesia Fig. 3, were reminiscent of IBD. Hence, the highest Nm value
was observed among MA and CA, the lowest among AZ and CV Fig. 3, Table 4.
4. Discussion