Proof of Proposition 3.2 Proof of Proposition 4.1

Deviation inequalities for sums of weakly dependent time series 499 with K = 43e − 4. We follow the Chernoff’s device optimizing in t ∈ [0; k ∗−1 ] the inequality ln PS f ≥ x ≤ ln EexptS f − t x and we obtain P S f ≥ x ≤ exp − x 2 2K n σ 2 k ∗ f 11 k ∗ x ≤2Knσ 2 k∗ f + exp K n σ 2 k ∗ f k ∗2 − x k ∗ 11 k ∗ x 2K nσ 2 k∗ f . Easy calculation yields for all x ≥ 0 P S f ≥ Æ 2K n σ 2 k ∗ f 11 k ∗2 x ≤2Knσ 2 k∗ f + k ∗ t + k ∗−1 K n σ 2 k ∗ f 11 k ∗2 x 2K nσ 2 k∗ f ≤ e −x . A rough bound k ∗ t + k ∗−1 K n σ 2 k ∗ f ≤ 3k ∗ x 2 for k ∗2 x 2K nσ 2 k ∗ f then leads to the result of the Theorem 3.1.

6.2 Proof of Proposition 3.2

We have the classical decomposition Var k X i= 1 f X i = k Var f X 1 + 2 k −1 X r= 1 k − r Cov f X 1 , f X r+ 1 . Now let us consider the coupling scheme f X r+ 1 ∗ distributed as f X r+ 1 but independent of M 1 . Then Cov f X 1 , f X r+ 1 = EE f X r+ 1 − f X r+ 1 ∗ | M 1 f X 1 . and as |E f X r+ 1 − f X r+ 1 ∗ |M 1 ≤ δ r by ineq. 2.4, we get the desired result.

6.3 Proof of Proposition 4.1

We sketch the proof of [21]. We are interested in estimating the coefficients ϕM j , X r+ j , . . . , X 2r −1+ j for any j, r satisfying 1 ≤ j ≤ j + r ≤ 2r − 1 + j ≤ n. Let us fix j, r and denote ξ k t a sequence such that ξ k t = ξ t for all t ≥ r + j − k j and ξ k t = ξ ′ t otherwise. Let U k t = F ξ k t − j ; j ∈ N and X k t = HU k t . For any f ∈ F , we have f X r+ j , . . . , X 2r −1+ j − f X k r+ j , . . . , X k 2r −1+ j ≤   1 r 2r −1+ j X i=r+ j dX i , X k i   ∧ 1. 6.3 By definition of the modulus of continuity, since dU k i , U i ≤ v k for any r + j ≤ i ≤ 2r − 1 + j, we have dX i , X k i = dHU i , HU k i ≤ w H U k i , v k . Noting that r −1 P 2r −1+ j i=r+ j w H U k i , v k ∧ 1 is a measurable function of ξ ′ t t r+ j−k , ξ t t ≥r+ j−k bounded by 1, we get, from the definition of the φ-mixing coefficients, E   r −1 2r −1+ j X i=r+ j w H U k i , v k ∧ 1 M j   ≤ φ r −k + E   r −1 2r −1+ j X i=r+ j w H U k i , v k ∧ 1   . 500 Electronic Communications in Probability Using again that dU k i , U i ≤ v k , then w H U k i , v k ≤ 2w H U i , 2v k . By stationarity of U t , we obtain E   r −1 2r −1+ j X i=r+ j w H U k i , v k ∧ 1   ≤ E2w H U , 2v k ∧ 1. So combining these inequalities we obtain for all 1 ≤ k ≤ r − 1: E f X r+ j , . . . , X 2r −1+ j − f X k r+ j , . . . , X k 2r −1+ j . M j ∞ ≤ φ r −k + E2w H U , 2v k ∧ 1. 6.4 Using again the definition of the φ-mixing coefficients we get, since f is bounded by 1, E f X k r+ j , . . . , X k 2r −1+ j . M j − E f X k r+ j , . . . , X k 2r −1+ j ∞ ≤ φ r −k . 6.5 Finally, using again 6.3 and that dX i , X k i ≤ w H U i , v k , by stationarity of U t we obtain E f X r+ j , . . . , X 2r −1+ j − E f X k r+ j , . . . , X k 2r −1+ j ≤ Ew H U , v k ∧ 1. 6.6 The result of the Proposition 4.1 follow from the definition of the ϕ-coefficients, the inequalities 6.4, 6.5 and 6.6.

6.4 Proof of Theorem 5.1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52