Proof of the Theorem 3.1

Deviation inequalities for sums of weakly dependent time series 497 As the proof of this lemma is similar to the proof given in [12], it is omitted here. Many solutions of econometrical models may be written as chains with infinite memory. However, the assumption of boundedness is very restrictive in econometrics.

5.4 Bernoulli shifts

Solutions of the recurrence equation 5.3 may always be written as X t = Hξ j j ≤t for some measurable function H : Y N 7→ X . A coupling version X ∗ t is thus given by X ∗ t = Hξ ∗ t for all t ∈ Z where ξ ∗ t is distributed as ξ t , independent of ξ t t ≤0 and such that ξ t = ξ ∗ t for t 0. If there exist a i ≥ 0 such that dHx , H y ≤ X i ≥1 a i dx i , y i with X i ≥1 a i ∞, and if d ξ 1 , y is bounded a.s. for some y ∈ Y , then there exists C 0 satisfying 5.1 with r δ ′ r = C X i ≥r a r . 6 Proofs

6.1 Proof of the Theorem 3.1

To deal with the dependence, we first use the Bernstein’s blocks technique as in [9] and then the proof ends with the Chernoff device as in the iid case. Let us denote by I j the j-th block of indices of size k, i.e. { j − 1k + 1, jk} except the last blocks and let p be an integer such that 2p − 1 ≤ k −1 n ≤ 2p. Denote S 1 and S 2 the sums of even and odd blocks defined as S 1 = X i ∈I 2 j , 1 ≤ j≤p f X i and S 2 = X i ∈I 2 j −1 , 1 ≤ j≤p f X i . We want to prove that for any 0 ≤ t ≤ 1, choosing k = [1t] ∧ n as in [9] it holds: ln EexptS f ≤ 4nt 2 2e − 2σ 2 k f + ekδ k . 6.1 From the Schwarz inequality, we get ln E[exptS f ] ≤ 1 2 ln E exp 2tS 1 + ln E exp 2tS 2 . 6.2 Now let us treat in detail the term depending on S 1 , the same argument applies identically to S 2 . Denoting L m = ln Eexp2t P i ∈I 2 j , 1 ≤ j≤m f X i for any 1 ≤ m ≤ p, we do a recurrence on m remarking that ln Eexp2tS 1 = L p . From the Holder inequality, for any 2 ≤ m ≤ p − 1 we get expL m+ 1 − expL m expL 1 ≤ expL m E exp 2t X i ∈I 2m+1 f X i | M 2mk − E exp 2t X i ∈I 2m+1 f X i ∞ 498 Electronic Communications in Probability ≤ expL m E exp 2t X i ∈I 2m+1 f X i − exp 2t X i ∈I 2m+1 f X i ∗ | M 2mk ∞ , where exp 2t P i ∈I 2m+1 f X i ∗ is a coupling version of the variable exp 2t P i ∈I 2m+1 f X i , in- dependent of M 2mk . The definition of the coupling coefficients τ ∞ provides that E exp 2t X i ∈I 2m+1 f X i − exp 2t X i ∈I 2m+1 f X i ∗ | M 2mk ∞ ≤ τ ∞ M 2mk , exp 2t X i ∈I 2m+1 f X i . As P i ∈I 2m+1 f X i is bounded with k2, then, using the metric d k , u → exp2t P k i= 1 u is a 2kt expkt-Lipschitz function bounded with expkt for all t ≥ 0. Thus for any n −1 t ≤ 1, choosing k = [1 t] ∧ n − 1 and under condition 3.1 we have τ ∞ M 2mk , exp 2t X i ∈I 2m+1 f X i ≤ 2kte kt ϕM 2mk , X i i ∈I 2m+1 ≤ 2eδ k . Collecting these inequalities, we achieve that expL m+ 1 ≤ expL m expL 1 + 2eδ k . The classical Bennett inequality applied on P i ∈I 2 f X i gives the estimate expL 1 ≤ 1+4σ 2 k f e kt − kt − 1k. As kt ≤ 1 we obtain L m+ 1 ≤ L m + ln ‚ 1 + 4e − 2σ 2 k f + 2ekδ k k Œ ≤ L m + 4e − 2σ 2 k f + 2ekδ k k . The last step of the recurrence leads to the desired inequality ln Eexp2tS 1 ≤ 2p 2e − 2σ 2 k f + ekδ k k . As the same inequality holds for S 2 we obtain 6.1 from 6.2 for n −1 t ≤ 1 remarking that 2pk −1 ≤ 4nt 2 . For t ≤ n −1 , classical Bennett inequality on S 1 gives ln Eexp2tS 1 ≤ 4σ 2 n f ne nt − nt − 1. Remarking that e nt −nt −1 ≤ nt 2 P j ≥0 nt j j +2 and j +2 ≥ 2·3 j , we obtain the inequality e nt − nt − 1 ≤ 2 −1 nt 2 P j ≥0 3 − j ≤ 3nt 2 4 for nt ≤ 1. Using it, we derive for any t ≤ n −1 that ln Eexp2tS 1 ≤ 3nσ 2 n f t 2 ≤ 4nt 2 2e − 2σ 2 n f + enδ n . The same inequality holds for S 2 and we obtain 6.1 for all 0 ≤ t ≤ n −1 and then for all 0 ≤ t ≤ 1. Note that by definition σ 2 k f ≤ σ 2 k ∗ f and kδ k ≤ σ 2 k f for all k ≥ k ∗ . From 6.1 we achieve ln EexptS f ≤ Knσ 2 k ∗ f t 2 , for 0 ≤ t ≤ k ∗−1 , Deviation inequalities for sums of weakly dependent time series 499 with K = 43e − 4. We follow the Chernoff’s device optimizing in t ∈ [0; k ∗−1 ] the inequality ln PS f ≥ x ≤ ln EexptS f − t x and we obtain P S f ≥ x ≤ exp − x 2 2K n σ 2 k ∗ f 11 k ∗ x ≤2Knσ 2 k∗ f + exp K n σ 2 k ∗ f k ∗2 − x k ∗ 11 k ∗ x 2K nσ 2 k∗ f . Easy calculation yields for all x ≥ 0 P S f ≥ Æ 2K n σ 2 k ∗ f 11 k ∗2 x ≤2Knσ 2 k∗ f + k ∗ t + k ∗−1 K n σ 2 k ∗ f 11 k ∗2 x 2K nσ 2 k∗ f ≤ e −x . A rough bound k ∗ t + k ∗−1 K n σ 2 k ∗ f ≤ 3k ∗ x 2 for k ∗2 x 2K nσ 2 k ∗ f then leads to the result of the Theorem 3.1.

6.2 Proof of Proposition 3.2

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52