Galerkin Approximation getdoc4c0a. 250KB Jun 04 2011 12:04:21 AM

where 1 γ α. It is easy to see that dE s,t 1−E 0,t is a probability measure on [0, t], by Jessen’s inequality, we have ‚Z t t − s 1 γ ∨ 1dE s, t Œ = ‚Z t t − s ∨ 1 dE s, t 1 − E 0, t Œ 1 γ 1 − E 0, t ≤ ‚Z t t − s ∨ 1dE s, t Œ 1 γ ≤ ‚Z t E s, tds Œ 1 γ + tE 0, t ≤ Cǫ, γ. On the other hand, by Doob’s martingale inequality and α-stable property 2.2, for all N ∈ N, we have E sup 1≤t≤2 N Zt t 1 γ ≤ E N X i=1 sup 2 i−1 ≤t≤2 i Zt t 1 γ ≤ N X i=1 E sup 2 i−1 ≤t≤2 i |Zt| 2 i−1γ ≤ C N X i=1 2 i α 2 i−1γ ≤ Cα, γ. From the above three inequalities, we immediately have E Z t Zt − Zs dE s, t ≤ Cα, γ, ǫ. Collecting all the above estimates, we conclude the proof of 2.9. 3 Existence of Infinite Dimensional Interacting α-stable Systems In order to prove the existence theorem of the equation 1.1, we shall first study its Galerkin approximation, and uniformly bound some approximate quantities. To pass to the Galerkin approx- imation limit, we need to apply a well known estimate in interacting particle systems – finite speed of propagation of information property.

3.1 Galerkin Approximation

Denote Γ N := [−N , N ] d , which is a cube in Z d centered at origin. We approximate the infinite dimensional system by d X N i t = [J i X N i t + I N i X N t]d t + d Z i t, X N i 0 = x i , 3.1 for all i ∈ Γ N , where x N = x i i∈Γ N and I N i x N = I i x N , 0. It is easy to see that 3.1 can be written in the following vector form d X N t = [J N X N t + I N X N t]d t + d Z N t, X N 0 = x N 3.2 2001 The infinitesimal generator of 3.2 [4], [33] is L N = X i∈Γ N ∂ α i + X i∈Γ N ” J i x N i + I N i x N — ∂ i , it is easy to see that [∂ k , L N ] = € ∂ k J k x N k Š ∂ k + X i∈Γ N € ∂ k I N i x N Š ∂ i . 3.3 We shall study the mild solution of Eq. 3.2 in the sense that for each i ∈ Γ N , X i t = E i 0, tx i + Z t E i s, tI N i X N sds + Z t E i s, td Z i s, 3.4 where E i s, t = exp{ R t s J i X N i r X N i r d r} with J i := J ′ i 0. The following proposition is important for proving the main theorems. 3 is the key estimates for obtaining the limiting semigroup of 1.1, while 2 plays the crucial role in proving the ergodicity. Proposition 3.1. Let I i , J i satisfy Assumption 2.2, together with 2.3 and 2.4, then 1. Eq. 3.2 has a unique mild solution X N t in the sense of 3.4. 2. For all x ∈ B R, ρ , if c η with c, η defined in 3 of Assumption 2.2, we have E x [|X N i t|] ≤ Cρ, R, d, η, c1 + |i| ρ . 3. For all x ∈ B R, ρ , we have E x [|X N i t|] ≤ Cρ, R, d1 + |i| ρ 1 + te 1+ηt . 4. For any f ∈ C 2 b R Γ N , R, define P N t f x = E x [ f X N t], we have P N t f x ∈ C 2 b R Γ N , R. Proof. To show 1, we first formally write down the mild solution as in 1, then apply the classical Picard iteration [9], Section 5.3. We can also prove 1 by some other method as in the appendix of [34]. For the notational simplicity, we shall drop the index N of the quantities if no confusions arise. By 1, we have X i t = E i 0, tx i + Z t E i s, tI i X N sds + Z t E i s, td Z i s. 3.5 By 1 of Assumption 2.2 w.l.o.g. we assume I i 0 = 0 for all i, |X i t| ≤ X j∈Γ N δ ji |x j | + Z t E j s, td Z j s + Z t e −ct−s X j∈Γ N a ji |X j s|ds. 3.6 2002 We shall iterate the the above inequality in two ways, i.e. the following Way 1 and Way 2, which are the methods to show 2 and 3 respectively. The first way is under the condition c η, which is crucial for obtaining a upper bound of E|X i t| uniformly for t ∈ [0, ∞, while the second one is without any restriction, i.e. c ≥ 0, but one has to pay a price of an exponential growth in t. Way 1: The case of c η. By the definition of c, η in 3 of Assumption 2.2, 3.6 and Proposition 2.7, E |X i t| ≤ X j∈Z d δ ji |x j | + Cc + Z t e −ct−s X j∈Z d a ji E |X j s|ds. 3.7 Iterating 3.7 once, one has E |X i t| ≤ X j∈Z d δ ji |x j | + Cc + X j∈Z d a ji c |x j | + Cc + Z t e −ct−s Z s e −cs−r X j∈Z d a 2 ji E |X j r|d r ds, 3.8 where Cc 0 is some constant only depending on c and α but we omit α since it does not play any crucial role here. Iterating 3.7 infinitely many times, we have E |X i t| ≤ M X n=0 1 c n X j∈Z d a n ji |x j | + Cc + R M ≤ ∞ X n=0 1 c n X j∈Z d a n ji |x j | + Cc 1 − ηc 3.9 where R M is an M -tuple integral see the double integral in 3.8 and lim M →∞ R M = 0. To estimate the double summation in the last line, we split the sum ’ P j∈Z d · · · ’ into two pieces, and control them by 2.6 and 1 c n respectively. More precisely, let Λi, n ⊂ Z d be a cube centered at i such that d isti, Λ c i, n = n 2 up to some O1 correction, one has ∞ X n=1 1 c n X j∈Z d a n ji |x j | = ∞ X n=1 1 c n    X j∈Λi,n + X j∈Λ c i,n    a n ji |x j |. 3.10 2003 Since x ∈ B R, ρ , we have by 2.6 with c = 0 therein ∞ X n=0 1 c n X j∈Λ c i,n a n ji |x j | ≤ R ∞ X n=0 1 c n X j∈Λ c i,n a n ji | j| ρ + 1 ≤ CR, ρ ∞ X n=0 1 c n X j∈Λ c i,n a n ji | j − i| ρ + |i| ρ + 1 ≤ CR, ρ ∞ X n=0 η n c n X j∈Λ c i,n X k≥| j−i| 2k nd e − 1 2 k e − 1 2 k | j − i| ρ + |i| ρ + 1 ≤ CR, ρ ∞ X n=1 η n c n X k≥n 2 2k nd e − 1 2 k X j∈Λ c i,n e − 1 2 | j−i| | j − i| ρ + |i| ρ + 1 ≤ Cρ, R, d1 + |i| ρ 3.11 where the last inequality is by the fact P k≥n 2 2k nd e − 1 2 k ≤ P k≥1 e − 1 2 k+nd log2k ∞ and the fact P j∈Λ c i,n e − 1 2 | j−i| | j − i| ρ ≤ P j∈Z d e − 1 2 | j−i| | j − i| ρ ∞. For the other piece, one has ∞ X n=0 1 c n X j∈Λi,n a n ji |x j | ≤ CR, ρ ∞ X n=0 1 c n X j∈Λi,n a n ji | j − i| ρ + |i| ρ + 1 ≤ CR, ρ ∞ X n=0 η n c n |Λi, n| € n 2 ρ + |i| ρ + 1 Š ≤ Cρ, R ∞ X n=0 η n c n n 2d € n 2 ρ + |i| ρ + 1 Š ≤ CR, ρ, η, c1 + |i| ρ . 3.12 Collecting 3.9, 3.11 and 3.12, we immediately obtain 2. Way 2: The general case of c ≥ 0. By the integration by parts, Doob’s martingale inequality and the 2004 easy relation dE j s, t = E j s, t[−L j X s]ds where L j x = J j x x , we have E Z t E j s, td Z j s ≤ E|Z j t| + E Z t E j s, tL j X sZ j sds ≤ C t 1 α + E   sup 0≤s≤t |Z j s| Z t E j s, t−L j X sds   ≤ C t 1 α + E sup 0≤s≤t |Z j s| ≤ C t 1 α . 3.13 By 3.6 and 3.13, one has E |X i t| ≤ X j∈Z d δ ji |x j | + C t 1 α + Z t X j∈Z d δ + a ji E |X j s|ds 3.14 Iterating the above inequality infinitely many times, E |X i t| ≤ ∞ X n=0 t n n X j∈Z d [δ + a n ] ji |x j | + C e 1+ηt t 1 α , 3.15 By estimating the double summation in the last line by the same method as in Way 1, we finally obtain 3. 4 immediately follows from Proposition 5.6.10 and Corollary 5.6.11 in [9].

3.2 Finite speed of propagation of information property

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52