Estimates for a and a + c 1d generalized Ornstein-Uhlenbeck

2.2.1 Estimates for a and a + c δ The lemma below will play an important role in several places such as proving 3.18. If a i j i, j∈Z d is the transition probability of a random walk on Z d , then 2.6 with c = 0 gives an estimate for the transition probability of the n steps walk. Lemma 2.5. Let a i j be as in Assumption 2.2 and satisfy 2.3. Define [cδ + a n ] i j := X i 1 ,···i n−1 ∈Z d cδ + a ii 1 · · · cδ + a i n−1 j where c ≥ 0 is some constant and δ is some Krockner’s function, we have [cδ + a n ] i j ≤ c + η n X k≥| j−i| 2k nd e −k 2.6 Remark 2.6. Without the additional assumption 2.3, one can also have the similar estimates as above, for instance, a n i j ≤ η n P k≥| j−i| C k nd exp{−k γ2 }. The C 0 is some constant depending on K, K ′ and γ, and will not play any essential roles in the later arguments. Proof. Denote the collection of the n+1-vortices paths connecting i and j by γ n i∼ j , i.e. γ n i∼ j = {γi n+1 i=1 : γ1 = i, γ2 ∈ Z d , · · · , γn ∈ Z d , γn + 1 = j}, for any γ ∈ γ n i∼ j , define its length by |γ| = n X k=1 |γk + 1 − γk|. We have [a + cδ n ] i j = X γ∈γ n i∼ j a + δ γ1,γ2 · · · a + cδ γn,γn+1 ≤ ∞ X |γ|=|i− j| 2|γ| d n c + η n e −|γ| 2.7 where the inequality is obtained by the following observations: • min γ∈γ n i∼ j |γ| ≥ |i − j|. • the number of the pathes in γ n i∼ j with length | γ| is bounded by [2|γ| d ] n • a + c δ γ1,γ2 · · · a + c δ γn,γn+1 = Q {k;γk+1=γk} a + c δ γk,γk+1 × Q {k;γk+16=γk} a γk,γk+1 ≤ c + η n e −|γ| . 1999

2.2.2 1d generalized Ornstein-Uhlenbeck

α-stable processes Our generalized α-stable processes satisfies the following SDE d X t = J X td t + d Zt X 0 = x 2.8 where X t, x ∈ R, J : R → R is differentiable function with polynomial growth, J 0 = 0 and d d x J x ≤ 0, and Zt is a one dimensional symmetric α-stable process with 1 α ≤ 2. One can write J x = J x x x, clearly J x x ≤ 0 with the above assumptions it is natural to define J 0 = J ′ 0. J x = −c x c 0 is a special case of the above J, this is the motivation to call 2.8 the generalized Ornstein-Uhlenbeck α-stable processes. The following uniform bound is important for proving 2 of Proposition 3.1. Proposition 2.7. Let X t be the dynamics governed by 2.8 and denote E s, t = exp{ R t s J X r X r d r}. If sup x∈R J x x ≤ −ǫ with any ǫ 0, then E x Z t E s, td Z s Cα, ǫ 2.9 where C α, ǫ 0 only depends on α, ǫ. Proof. From 1 of Proposition 3.1, we have X t = E 0, tx + Z t E s, td Zs. 2.10 By integration by parts formula [9], E Z t E s, td Zs = E Zt − Z t ZsdE s, t ≤ E |ZtE 0, t| + E Z t Zt − Zs dE s, t . By 2.2, the first term on the r.h.s. of the last line is bounded by E |ZtE 0, t| ≤ e −ǫt E |Zt| ≤ C e −ǫt t 1 α → 0 t → ∞. As for the second term, one has E Z t Zt − Zs t − s 1 γ ∨ 1 ” t − s 1 γ ∨ 1 — dE s, t ≤ E sup 0≤s≤t Zt − Zs t − s 1 γ ∨ 1 Z t ” t − s 1 γ ∨ 1 — dE s, t 2000 where 1 γ α. It is easy to see that dE s,t 1−E 0,t is a probability measure on [0, t], by Jessen’s inequality, we have ‚Z t t − s 1 γ ∨ 1dE s, t Œ = ‚Z t t − s ∨ 1 dE s, t 1 − E 0, t Œ 1 γ 1 − E 0, t ≤ ‚Z t t − s ∨ 1dE s, t Œ 1 γ ≤ ‚Z t E s, tds Œ 1 γ + tE 0, t ≤ Cǫ, γ. On the other hand, by Doob’s martingale inequality and α-stable property 2.2, for all N ∈ N, we have E sup 1≤t≤2 N Zt t 1 γ ≤ E N X i=1 sup 2 i−1 ≤t≤2 i Zt t 1 γ ≤ N X i=1 E sup 2 i−1 ≤t≤2 i |Zt| 2 i−1γ ≤ C N X i=1 2 i α 2 i−1γ ≤ Cα, γ. From the above three inequalities, we immediately have E Z t Zt − Zs dE s, t ≤ Cα, γ, ǫ. Collecting all the above estimates, we conclude the proof of 2.9. 3 Existence of Infinite Dimensional Interacting α-stable Systems In order to prove the existence theorem of the equation 1.1, we shall first study its Galerkin approximation, and uniformly bound some approximate quantities. To pass to the Galerkin approx- imation limit, we need to apply a well known estimate in interacting particle systems – finite speed of propagation of information property.

3.1 Galerkin Approximation

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52