Auxiliary Markov-chains getdoc9d47. 196KB Jun 04 2011 12:04:45 AM

3 Proof of Theorem 1 The proof is organized as follows. We introduce independent auxiliary Markov-chains associated to the vertices of Z in such a way that the value of the local time at the edges can be expressed with a sum of such Markov-chains. It turns out that the auxiliary Markov-chains converge exponentially fast to their common unique stationary distribution. It allows us to couple the local time process of the self-repelling random walk with the sum of i.i.d. random variables. The coupling yields that the law of large numbers for i.i.d. variables can be applied for the behaviour of the local time, with high probability. The coupling argument breaks down when the local time approaches 0. We show in Subsection 3.4, how to handle this case. Let L j,r k := ℓ + T + j,r , k. 14 Mind that due to 2, 3 and 6 ¯ ¯Λ + j,r k − 2L j,r k ¯ ¯ ≤ 1. 15 We give the proof of 7, 8 and sup y ∈R ¯ ¯ ¯ ¯A −1 L ⌊Ax⌋,⌊Ah⌋ ⌊Ay⌋ − |x| − | y| 2 + h + ¯ ¯ ¯ ¯ P −→ 0 as A → ∞, which, due to 15, implies 9 for Λ + . The case of Λ − can be done similarly. Without loss of generality, we can suppose that x ≤ 0.

3.1 Auxiliary Markov-chains

First we define the Z-valued Markov-chain l 7→ ξl with the following transition probabilities: P ξl + 1 = x + 1 | ξl = x = w −x wx + w −x =: px, 16 P ξl + 1 = x − 1 | ξl = x = wx wx + w −x =: qx. 17 Let τ ± m, m = 0, 1, 2, . . . be the stopping times of consecutive upwardsdownwards steps of ξ: τ ± 0 := 0, τ ± m + 1 := min l τ ± m : ξl = ξl − 1 ± 1 . Then, clearly, the processes η + m := −ξτ + m, η − m := +ξτ − m are themselves Markov-chains on Z. Due to the ± symmetry of the process ξ, the Markov-chains η + and η − have the same law. In the present subsection, we simply denote them by η neglecting the subscripts ±. The transition probabilities of this process are Px, y := P ηm + 1 = y | ηm = x = Q y z=x pzq y + 1 if y ≥ x − 1, if y x − 1. 18 1914 In the following lemma, we collect the technical ingredients of the forthcoming proof of our limit theorems. We identify the stationary measure of the Markov-chain η, state exponential tightness of the distributions of ηm ¯ ¯ η0 = 0 uniformly in m and exponentially fast convergence to stationarity. Lemma 1. i The unique stationary measure of the Markov-chain η is ρx = Z −1 ⌊|2x+1|2⌋ Y z=1 w −z wz with Z := 2 ∞ X x=0 x Y z=1 w −z wz . 19 ii There exist constants C ∞, β 0 such that for all m ∈ N and y ∈ Z P m 0, y ≤ C e −β| y| . 20 iii There exist constants C ∞ and β 0 such that for all m ≥ 0 X y ∈Z ¯ ¯P m 0, y − ρ y ¯ ¯ Ce −β m . 21 Remark on notation: We shall use the generic notation something ≤ C e −β Y for exponentially strong bounds. The constants C ∞ and β 0 will vary at different occur- rences and they may and will depend on various fixed parameters but of course not on quantities appearing in the expression Y . There will be no cause for confusion. Note that for any choice of the weight function w +∞ X x= −∞ x ρx = − 1 2 . 22 Proof of Lemma 1. The following proof is reminiscent of the proof of Lemmas 1 and 2 from [10]. It is somewhat streamlined and weaker conditions are assumed. i The irreducibility of the Markov-chain η is straightforward. One can easily rewrite 18, using 19, as Px, y =    1 ρx px Q y+1 z=x+1 qz ρ y if y ≥ x − 1, if y x − 1. It yields that ρ is indeed the stationary distribution for η, because X x ∈Z ρxPx, y =   X x ≤ y+1 px y+1 Y z=x+1 qz   ρ y = ρ y where the last equality holds, because lim z →−∞ Q y+1 u=z qu = 0. 1915 ii The stationarity of ρ implies that P n 0, y ≤ ρ y ρ0 = ⌊|2 y+1|2⌋ Y z=1 w −z wz ≤ C e −β| y| . 23 The exponential bound follows from 1. As a consequence, we get finite expectations in the forth- coming steps of the proofs below. iii Define the stopping times θ + = min{n ≥ 0 : ηn ≥ 0}, θ = min{n ≥ 0 : ηn = 0}. From Theorem 6.14 and Example 5.5a of [6], we can conclude the exponential convergence 21, if for some γ 0 E exp γθ | η0 = 0 ∞ 24 holds. The following decomposition is true, because the Markov-chain η can jump at most one step to the left. E exp γθ | η0 = 0 = e γ X y ≥0 P0, y E exp γθ | η0 = y + e γ P0, −1 X y ≥0 E exp γθ + 11{ηθ + = y} | η0 = −1 E exp γθ | η0 = y . 25 One can easily check that, given η0 = −1, the random variables θ + and ηθ + are independent, and P ηθ + = y | η0 = −1 = p0p1 . . . p yq y + 1 = P0, y, by definition. Hence for y ≥ 0 E exp γθ + 11{ηθ + = y} | η0 = −1 = P0, y 1 − P0, −1 E exp γθ + | η0 = −1 . 26 Combining 25 and 26 gives us E exp γθ | η0 = 0 = e γ X y ≥0 P0, y E exp γθ | η0 = y 1 + P0, −1 1 − P0, −1 E exp γθ + | η0 = −1 . 27 So, in order to get the result, we need to prove that for properly chosen γ 0 E exp γθ + | η0 = −1 ∞ 28 and E exp γθ | η0 = y ≤ C e β 2 y for y ∈ Z + 29 where β is the constant in 20. 1916 In order to make the argument shorter, we make the assumption w −1 w+1, or, equivalently, p1 = w −1 w+1 + w −1 1 2 w+1 w+1 + w −1 = q1. The proof can be easily extended for the weaker assumption 1, but the argument is somewhat longer. First, we prove 28. Let x 0 and x − 1 ≤ y 0. Then the following stochastic domination holds: X z ≥ y Px, z = y Y z=x pz ≥ p−1 y −x+1 = q1 y −x+1 . 30 Let ζr, r = 1, 2, . . . be i.i.d. random variables with geometric law: P ζ = z = q1 z+1 p1, z = −1, 0, 1, 2, . . . , and e θ := min t ≥ 0 : t X s=1 ζs ≥ 1 . Note that E ζ 0. From the stochastic domination 30, it follows that for any t ≥ 0 P θ + t | η0 = −1 ≤ P e θ t , and hence E exp γθ + | η0 = −1 ≤ E expγ e θ ∞ for sufficiently small γ 0. Now, we turn to 29. Let now 0 ≤ x − 1 ≤ y. In this case, the following stochastic domination is true: X z ≥ y Px, z = y Y z=x pz ≤ p1 y −x+1 . 31 Let now ζr, r = 1, 2, . . . be i.i.d. random variables with geometric law: P ζ = z = p1 z+1 q1, z = −1, 0, 1, 2, . . . , and for y ≥ 0 e θ y := min t ≥ 0 : t X s=1 ζs ≤ − y . Note that now E ζ 0. From the stochastic domination 31, it follows now that with y ≥ 0, for any t ≥ 0 P θ t | η0 = y ≤ P e θ y t , and hence E exp γθ | η0 = y ≤ E expγ e θ y ≤ C e β 2 y , for sufficiently small γ 0. 1917

3.2 The basic construction

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52