Hitting of 0 getdoc9d47. 196KB Jun 04 2011 12:04:45 AM

with some constants C ∞ and β 0, which do depend on all fixed parameters and may vary from formula to formula. Putting together 45, 47, 48, respectively, 46, 47, 49 and noting that P κ + j,r = j = 0, we conclude that P min |k| : L ⌊Ax⌋,⌊Ah⌋ k 6= eL ⌊Ax⌋,⌊Ah⌋ k ≤ A|x| + 2h − 4A 1 2+ǫ ≤ CAe −βA 2 ǫ , 50 P L ⌊Ax⌋,⌊Ah⌋ ±⌊A|x| + 2h − 4A 1 2+ǫ ⌋ ≥ 3A 1 2+ǫ ≤ C e −βA 2 ǫ . 51

3.4 Hitting of 0

It follows from Lemma 1 that all moments of the distributions P n 0, · converge to the corresponding moments of ρ. In particular, for any δ 0 there exists n δ ∞, such that X x ∈Z P n 0, xx ≤ − 1 2 + δ holds if n ≥ n δ . Consider now the Markov-chains defined by 38 or 39 the two are identical in law: Lk + 1 = Lk + η k+1 Lk, L0 = r ∈ N, where m 7→ η k m, k = 1, 2, 3, . . . are i.i.d. copies of the Markov-chain m 7→ ηm with initial conditions η k 0 = 0. Define the stopping times τ x := min {k : Lk ≤ x}, x = 0, 1, 2, . . . . Lemma 2. For any δ 0 there exists K δ ∞ such that for any r ∈ N: E τ | L0 = r ≤ 2 + δr + K δ . Proof. Clearly, E τ | L0 = r ≤ E τ n δ | L0 = r + max ≤s≤n δ E τ | L0 = s . Now, by optional stopping, E τ n δ | L0 = r ≤ 2 + δr, and obviously, K δ := max ≤s≤n δ E τ | L0 = s ∞. In particular, choosing δ = 1 and applying Markov’s inequality, it follows that 1921 P  ρ + ⌊Ax⌋,⌊Ax⌋ A|x| + 2h + A 1 2+2ǫ ¯ ¯ ¯ L ⌊Ax⌋,⌊Ah⌋ ⌊A|x| + 2h − 4A 1 2+ǫ ⌋ ≤ 3A 1 2+ǫ ‹ ≤ 9A 1 2+ǫ + K 1 5A 1 2+2ǫ 2A −ǫ , 52 and similarly, P  λ + ⌊Ax⌋,⌊Ax⌋ −A|x| + 2h − A 1 2+2ǫ ¯ ¯ ¯ L ⌊Ax⌋,⌊Ah⌋ −⌊A|x| + 2h + 4A 1 2+ǫ ⌋ ≤ 3A 1 2+ǫ ‹ ≤ 9A 1 2+ǫ + K 1 5A 1 2+2ǫ 2A −ǫ . 53 Eventually, Theorem 1 follows from 43, 50, 51, 52 and 53. 4 Proof of the theorem for the position of the random walker First, we introduce the following notations. For n ∈ N and k ∈ Z, let Pn, k := P X n = k be the distribution of the position of the random walker. For s ∈ R + , Rs, k := 1 − e −s ∞ X n=0 e −sn Pn, k 54 is the distribution of X θ s where θ s has geometric distribution 12 and it is independent of X n. Also 11 tells us that the proper definition of the rescaled distribution is ϕ A t, x := A 1 2 P ⌊At⌋, ⌊A 1 2 x ⌋, if t ∈ R + and x ∈ R. Let ˆ ϕ A s, x := A 1 2 RA −1 s, ⌊A 1 2 x ⌋, 55 which is asymptotically the Laplace-transform of ϕ A as A → ∞. With these definitions, the statement of Theorem 2 is equivalent to ˆ ϕ A s, x → ˆ ϕs, x, which is proved below. We will need the Laplace-transform ˆ ρs, x, h = s E exp € −s T x,h Š = se −s|x|+2h 2 , for which ˆ ϕs, x = 2 Z ∞ ˆ ρs, |x|, h dh holds. 1922 Proof of Theorem 2. Fix x ≥ 0. We can proceed in the case x ≤ 0 similarly. We start with the identity Pn, k = P X n = k = ∞ X m=0 P T + k −1,m = n + P T − k+1,m = n , 56 which is easy to check. From the definitions 54 and 55, ˆ ϕ A s, x = 1 − e −sA s A s ∞ X n=0 1 p A e −nsA Pn, ⌊A 1 2 x ⌋ = 1 − e −sA s A s ∞ X n=0 1 p A  E e −sA −1 T + ⌊A12 x⌋−1,n + E e −sA −1 T − ⌊A12 x⌋+1,n ‹ , 57 where we used 56 in the second equality. Let ˆ ρ ± A

s, x, h = s E exp −

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52