The density fluctuations getdocb1e1. 169KB Jun 04 2011 12:04:51 AM

Density fluctuations on the percolation cluster 385

2.3 The density fluctuations

Let ρ ∈ 0, ρ c be fixed and consider the process ξ n t = ξ t n 2 starting from the measure ν ρ . We denote by P n the distribution of the process ξ n · in the Skorohod space D[0, ∞, Ω of càdlàg trajectories in Ω, and by E n the expectation with respect to P n . Denote by C c R d the set of continuous functions G : R d → R with compact support. By the ergodic theorem, it is not hard to see that lim n→∞ 1 n d X x∈C ω Gx nξx = θ pρ Z R d Gxd x , almost surely with respect to the probability measure P ⊗ ν ρ . In the previous result, the ergodic theorem is invoked twice: first to state that the density of points belonging to C ω when properly rescaled is equal to θ p, and then to state that the density of particles is equal to ρ. Since the measure ν ρ is invariant under the dynamics of ξ t , the same result is also valid if we replace ξ by ξ n t in the previous expression. We are interested on a version of the central limit theorem for this quantity. Let us define, for each test function G, the density fluctuation field Y n t G by Y n t G = 1 n d 2 X x∈C ω Gx n ξ n t x − ρ . For topological reasons, it will be convenient to restrict the previous definition to functions G ∈ S R d , the Schwartz space of test functions, although Y n t G makes sense for more general test functions. The process Y n t defined in this way corresponds to a process on the Skorohod space D[0, ∞, S ′ R d , where S ′ R d is the space of distributions on R d . Now we are ready to state our main result: Theorem 2.1. Fix a particle density ρ ∈ 0, ρ c . In dimension d 2, for almost all ω, the sequence of processes {Y n t } n converges in the sense of finite-dimensional distributions to a Gaussian process Y t with mean zero and covariance given by E[Y t+s HY s G] = χρθ p Z R d G yS t H yd y , where we define χρ = Varξ0; ν ρ , S t denotes the semigroup generated by the operator ϕ ′ ρD∆, s , t ≥ 0 and G, H ∈ S R d and D is the limiting variance of a symmetric random walk in C ω. We call the process Y t the generalized Ornstein-Uhlenbeck process of characteristics ϕ ′ ρD∆ and p 2 θ pϕρD∇. Notice that this theorem implies in particular a central limit theorem for the sequence {Y n t G} n for any G ∈ S R d . 3 The corrected fluctuation field

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52