Statistik Deskriptif Pengujian Asumsi Klasik .1 Uji Normalitas

2010, penduduk Aceh berjumlah 4.494.410 jiwa. Luas wilayah provinsi Aceh adalah 58.375,63 km 2 dan terdiri dari 18 Kabupaten, 5 kota, 276 kecamatan, dan 6.455 desakelurahan.

4.1.2 Statistik Deskriptif

Statistik Deskriptif adalah ilmu statistik yang mempelajari cara-cara pengumpulan, penyusunan dan penyajian data suatu penelitian. Tujuannya adalah memudahkan orang untuk membaca data serta memahami maksudnya. Berikut ini merupakan output SPSS yang merupakan keseluruhan data yang digunakan dalam penelitian ini. Tabel 4.1 Descriptive Statistics N Minimum Maximum Mean Std. Deviation PAD X1 DAU X2 DBH_PJK X3 DBH_SDA X4 BM Y ValidN listwise 69 69 69 69 69 69 1514408 87981636 6449430 7526382 19949591 79924769 447301513 172935863 352246366 396351514 17309600.19 2.69 33707139.38 28211493.67 90365132.94 1.57 7.455 3.202 5.682 5.470 Sumber : Diolah dari SPSS, 2013 Berdasarkan tabel 4.2 di atas, maka dapat dijelaskan bahwa dalam ribuan rupiah : a. Variabel Pendapatan Asli Daerah X1 memiliki nilai minimum 1514408, nilai maksimum 79924769, rata-rata Pendapatan Asli Daerah 17309600.19 dan Universitas Sumatera Utara standar deviasi sebesar 1.57 dengan jumlah sampel sebanyak 69. b. Variabel Dana Alokasi Umum X2 memiliki nilai minimum 87981636, nilai maksimum 447301513, rata-rata Dana Alokasi Umum 2.69 dan standar deviasi sebesar 7.455 dengan jumlah sampel sebanyak 69. c. Variabel Dana Bagi Hasil Pajak X3 memiliki nilai minimum 6449430, nilai maksimum 172935863, rata-rata Dana Bagi Hasil Pajak 33707139.38 dan standar deviasi sebesar 3.202 dengan jumlah sampel sebanyak 69. d. Variabel Dana Bagi Hasil Sumber Daya Alam X4 memiliki nilai minimum 7526382, nilai maksimum 352246366, rata-rata Dana Bagi Hasil Sumber Daya Alam 28211493.67 dan standar deviasi sebesar 5.682 dengan jumlah sampel sebanyak 69. e. Variabel Belanja Modal Y memiliki nilai minimum 19949591, nilai maksimum 396351514, rata-rata Belanja Modal 90365132.94 dan standar deviasi sebesar 5.470 dengan jumlah sampel sebanyak 69. 4.1.3 Pengujian Asumsi Klasik 4.1.3.1 Uji Normalitas Pengujian normalitas ini bertujuan untuk mengetahui apakah data yang digunakan telah terdistribusi secara normal. Hasil uji normalitas dengan grafik histogram yang diolah dengan SPSS, normal probability plot serta Kolmogorov – Smirnov Test ditunjukkan sebagai berikut : Universitas Sumatera Utara Hasil Uji Normalitas Sebelum Transformasi dengan Logaritma Natural Gambar 4.1 Histogram Sumber : Diolah dari SPSS, 2013 Dari gambar histogram di atas, grafik histogram menunjukkan menceng ke kanan. Hal ini mengindikasikan bahwa distribusi data tidak normal. Tindakan perbaikan yang dilakukan dalam penelitian ini yaitu dengan menggunakan transformasi seluruh variabel penelitian ke dalam fungsi logaritma natural Ln, kemudian data diuji ulang. Hasil pengujian ulang data menghasilkan : Universitas Sumatera Utara Hasil Uji Normalitas Setelah Transformasi dengan Logaritma Natural Gambar 4.2 Histogram Sumber : Diolah dari SPSS, 2013 Hasil uji normalitas di atas memperlihatkan bahwa pada grafik histogram di atas distribusi data mengikuti kurva berbentuk lonceng yang tidak menceng skewness kiri maupun menceng kanan atau dapat disimpulkan bahwa data tersebut normal. Universitas Sumatera Utara Hasil Uji Normalitas SebelumTransformasi dengan Logaritma Natural Gambar 4.3 Normal P-P Plot Sumber : Diolah dari SPSS, 2013 Hasil uji normalitas dengan menggunakan normal probability plot, terlihat bahwa titik-titik tidak menyebar dan menyempit menumpuk di sekitar garis diagonal serta titik-titik tidak mengikuti garis diagonal sehingga data dalam model regresi terdistribusi secara tidak normal. Tindakan perbaikan yang dilakukan dalam penelitian ini yaitu dengan Universitas Sumatera Utara menggunakan transformasi seluruh variabel penelitian ke dalam fungsi logaritma natural Ln, kemudian data diuji ulang. Hasil pengujian ulang data menghasilkan : Hasil Uji Normalitas Setelah Transformasi dengan Logaritma Natural Gambar 4.4 Normal P-P Plot Sumber : Diolah dari SPSS, 2013 Hasil uji normalitas dengan menggunakan normal probability plot, terlihat bahwa titik-titik menyebar di sekitar garis diagonal serta penyebarannya mengikuti garis diagonal sehingga dapat disimpulkan bahwa data dalam model regresi Universitas Sumatera Utara terdistribusi secara normal. Pengujian normalitas data dalam penelitian ini menggunakan uji statistik non parametik Kolomogorov-Smirnov K-S dengan membuat hipotesis : H : Data residual berdistribusi normal. H 1 : Data residual tidak berdistribusi normal. H diterima apabila nilai signifikansinya lebih besar dari 0.05, sedangkan H ditolak jika nilai signifikansinya lebih kecil dari 0,05. Tabel 4.2 Uji Normalitas One-Sample Kolmogorov-Smirnov Test Unstandardized Residual N 69 Normal Parameters a,,b Mean .0000000 Std. Deviation 3.25 Most Extreme Differences Absolute .094 Positive .094 Negative -.091 Kolmogorov-Smirnov Z .780 Asymp. Sig. 2-tailed .578 a. Test distribution is Normal. b. Calculated from data. Sumber : Diolah dari SPSS, 2013 Hasil analisis metode One-Sample Kolmogorov-Smirnov, menunjukkan bahwa nilai Kolmogorov - Smirnov sebesar 0,780 dan tidak signifikan pada 0,05 karena Universitas Sumatera Utara Asymp. Sig. 2-tailed 0,578 dari 0,05, jadi kita tidak dapat menolak H yang mengatakan bahwa residual terdistribusi secara normal atau dengan kata lain variabel regresi berdistribusi normal.

4.1.3.2 Uji Multikolinearitas

Uji multikolinearitas bertujuan untuk menguji apakah dalam sebuah model regresi ditemukan adanya korelasi antarvariabel independen. Gejala multikolinearitas dapat dideteksi ada tidaknya dengan melihat nilai tolerance dan Variance Inflation Factor VIF. Besarnya tingkat kolinearitasitas yang masih dapat ditolerir, yaitu: Tol 0,10 dan Variance Inflation factor VIF 10. Hasil uji multikolinearitas dapat dilihat pada tabel berikut : Tabel 4.3 Uji Multikolinearitas Coefficients a Model Unstandardized Coefficient Standardized Coefficient t Sig. Collinearity Statistics B Std.Error Tolerance VIF 1 Constant Ln_PAD Ln_DAU Ln_DBH_PJK Ln_DBH_SDA 7.575 .135 .123 .099 .262 3.216 .0727 .173 .077 .059 .241 .082 .146 .461 2.356 1.866 .714 1.281 4.431 .022 .067 .478 .205 .000 .502 .632 .650 .775 1.992 1.582 1.539 1.29 a. Dependent Variable: LN_BM Sumber : Diolah dari SPSS, 2013. Dari hasil pengujian tersebut, dapat dilihat bahwa angka tolerance Ln PAD Universitas Sumatera Utara X1, Ln DAU X2, Ln DBH_PJK X3, dan Ln DBH_SDA X4 0,10 dan nilai VIF nya 10. Ini menunjukkan bahwa tidak terjadi multikolinearitas di antara variabel dalam penelitian.

4.1.3.3 Uji Heterokedasitas

Uji heterokedasitas dilakukan untuk menguji apakah dalam sebuah model regresi terjadi ketidaksamaan varians dari residual dari satu pengamatan ke pengamatan yang lain. Gejala heterokedasitas dapat dideteksi dengan melihat plot grafik scatterplot dan Uji Glejser . Hasil dari uji heterokedasitas dapat dilihat pada grafik scatterplot berikut ini : Universitas Sumatera Utara Hasil Uji Heterokedasitas Sebelum Transformasi dengan Logaritma Natural Gambar 4.5 Grafik Scatterplot Sumber : Diolah dari SPSS, 2013 Grafik scatterplot menunjukkan bahwa titik-titik tidak menyebar secara acak di atas dan di bawah angka 0 pada sumbu Y, serta cenderung menyempit menumpuk. Hal ini mengindikasikan telah terjadi heterokedasitas pada model regresi sehingga model regresi tidak layak pakai. Tindakan perbaikan yang dilakukan yaitu dengan menggunakan cara transformasi seluruh variabel penelitian ke dalam fungsi logaritma natural Ln, Universitas Sumatera Utara kemudian data diuji ulang. Hasil pengujian ulang data adalah sebagai berikut : Hasil Uji Heterokedasitas Setelah Transformasi dengan Logaritma Natural Gambar 4.6 Grafik Scatterplot Sumber : Diolah dari SPSS, 2013 Dari gambar scatterplot di atas, terlihat bahwa titik-titik menyebar secara acak di atas dan di bawah angka 0 pada sumbu Y, serta tidak membentuk pola tertentu atau tidak teratur. Hal ini berarti tidak terjadi heterokedasitas pada model regresi.

4.1.3.4 Uji Autokorelasi

Universitas Sumatera Utara Uji autokorelasi bertujuan untuk melihat apakah dalam suatu model regresi linear ada korelasi antar kesalahan pengganggu pada periode t dengan kesalahan pada periode t-1. Cara yang dapat digunakan untuk mendeteksi ada atau tidaknya autokorelasi yaitu dengan menggunakan nilai uji Durbin Watson dengan ketentuan sebagai berikut : 1 Angka D-W dibawah -2 berarti ada autokorelasi positif, 2 Angka D-W diantara -2 sampai +2, berarti tidak ada autokorelasi, 3 Angka D-W diatas +2 berarti ada autokorelasi negatif. Hasil dari uji autokorelasi dapat dilihat pada tabel berikut ini : Tabel 4.4 Hasil Uji Autokorelasi Model Summary b Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 1 .680 a .463 .429 .33206 1.802 a. Predictors: Constant, LN_DBH_SDA, LN_DAU, LN_DBH_PJKJ, LN_PAD b. Dependent Variable: LN_BM Sumber : Diolah dari SPSS, 2013. Hasil uji autokorelasi diatas menunjukkan nilai statistik D-W sebesar 1,802 angka ini terletak diantara -2 dan +2, sehingga dapat disimpulkan bahwa tidak terjadi autokorelasi positif maupun negatif.

4.1.4 Model dan Teknik Analisis Data