Path analysis Representation theorem

4.1 Path analysis

In this section, we give some path properties of quadratic variation process 〈B〉 t and the related stochastic integral Z t ηsd B s , η ∈ M 2 G 0, T and Z t η 1 sd〈B〉 s , η 1 s ∈ M 1 G 0, T . From the definition of E G [·], we know that the canonical process B t is a quadratic integrable mar- tingale under each P v . So they have a universal version of “quadratic variation process of B t , and by the definition of stochastic integral with respect to G-Brownian motion, for any η ∈ M 2 G 0, T , Z T η s d B s is well defined, which means Z T η s d B s is a P v local martingale. Similar arguments can be found in Lemma 2.10 in [10]. Then, due to the Doob’s martingale inequality for each P v , the following result holds. Lemma 4.2. For any η ∈ M 2 G 0, T , Z t ηsd B s is quasi-sure continuous. Proof: If η ∈ M 2,0 G 0, T , then the result is true. If η ∈ M 2 G 0, T , then there exist {η n } ⊂ M 2,0 G 0, T such that Z T E G [|ηs − η n s| 2 ]ds −→ 0. For we have sup P v ∈Λ E P v [ sup ≤t≤T | Z t η − η n d B s | 2 ] ≤ K sup P v ∈Λ E P v [ Z T η − η n 2 d 〈B〉 s ] ≤ K sup P v ∈Λ E P v [ Z T η − η n 2 ds] ≤ K Z T sup P v ∈Λ E P v [η − η n 2 ]ds −→ 0. Hence, Z t η n sd B s uniformly converges to Z t ηsd B s q.s. Therefore, Z t ηsd B s is continuous q.s. By similar argument we can get the following lemma. Lemma 4.3. For any η ∈ M 1 G 0, T , Z t ηsd〈B〉 s and Z t ηsds are quasi-surely continuous.

4.2 Representation theorem

In this section, we are concerned with the G-martingale when the corresponding G-heat equation is uniformly parabolic σ 0. In the following, for any X ∈ L i p F T , we will give X a repre- sentation in terms of stochastic integral. For this part, Peng gives the conjecture for representation theorem of G-martingales. Soner et al [21] prove this theorem for a large class of G-martingales by BSDE method. Here for the ease of exposition, we prove the theorem separately for some special martingales. First we prove a lemma. 2051 Lemma 4.4. Suppose σ 0, if u is the solution of G-heat equation, then we have ur , B t −r = ut, 0 + Z t −r u x B v d B v + Z t −r u x x B v d〈B〉 v − Z t −r u + x x − σ 2 u − x x d v. Proof: The proof follows that of Itô’s formula. Due to the regularity of parabolic equation, see [18], we know u, u x , u x x are all uniformly continuous. Since Lipschitz continuous functions are dense in uniform continuous functions, we assume that u, u x , u x x are Lipschitz continuous. Let δ n = t − r n , we have ur , B t −r − ut, 0 = n −1 X k= ” ut − k + 1δ n , B k+1δ n − ut − kδ n , B k δ n — = n −1 X k= ” ut − k + 1δ n , B k+1δ n − ut − kδ n , B k+1δ n — + n −1 X k= ” ut − kδ n , B k+1δ n − ut − kδ n , B k δ n — = n −1 X k= ” −u t t − kδ n , B k δ n δ n + u x t − kδ n , B k δ n B k+1δ n − B k δ n + 1 2 u x x t − kδ n , B k δ n B k+1δ n − B k δ n 2 − ξ n + η n , where η n = 1 2 n −1 X k= [u x x t − kδ n , B k δ n + θ 1 B k+1δ n − B k δ n − u x x t − kδ n , B k δ n ]B k+1δ n − B k δ n 2 , ξ n = n −1 X k= ” u t t − kδ n + θ 2 δ n , B k+1δ n − u t t − kδ n , B k+1δ n — δ n , + n −1 X k= ” u t t − kδ n , B k+1δ n − u t t − kδ n , B k δ n — δ n , and θ 1 , θ 2 are constants in [0, 1], which depend on ω, t and n. Hence, E G [|η n |] ≤ n −1 X k= E G ” |u x x t − kδ n , B k δ n + θ B k+1δ n − B k δ n −u x x t − kδ n , B k δ n |B k+1δ n − B k δ n 2 — ≤ K n −1 X k= E G [|B k+1δ n − B k δ n | 3 ] ≤ K n −1 X k= δ 32 n −→ 0. Here, K is the Lipschitz constant of u x x , and by similar argument we get E G [|ξ n |] −→ 0 as n → ∞. 2052 Then, we have E G [| n X k= 1 −u t t − kδ n , B k δ n I [kδ n ,k+1δ n v − u t t − v, B v |] ≤ Cδ n + δ 12 n −→ 0. Therefore, n −1 X k= −u t t − kδ n , B k δ n δ n −→ Z t −r −u t t − v, B v d v. Similarly we get n −1 X k= u x t − kδ n , B k δ n B k+1δ n − B k δ n −→ Z t −r u x t − v, B v d B v . Note E G [| n −1 X k= u x x t − kδ n , B k δ n B k+1δ n − B k δ n 2 − n −1 X k= u x x t − kδ n , B k δ n 〈B〉 k+1δ n − 〈B〉 k δ n | 2 ] ≤ n −1 X k= E G [|u x x t − kδ n , B k δ n | 2 |B k+1δ n − B k δ n 2 − 〈B〉 k+1δ n − 〈B〉 k δ n | 2 ] + 2 X j 6=i E G [u x x t − jδ n , B j δ n u x x t − iδ n , B i δ n B j+1δ n − B j δ n 2 − 〈B〉 j+1δ n − 〈B〉 j δ n B i+1δ n − B i δ n 2 − 〈B〉 i+1δ n − 〈B〉 i δ n ] ≤ n −1 X k= E G [c + c|B k δ n | 2 | Z k+1δ n k δ n B v − B k δ n d B v | 2 ] ≤ n −1 X k= C E G [| Z k+1δ n k δ n B v − B k δ n d B v | 2 ] ≤ C n −1 X k= δ 2 n −→ 0, and n −1 X k= u x x t − kδ n , B k δ n 〈B〉 k+1δ n − 〈B〉 k δ n −→ Z t −r u x x t − v, B v d〈B〉 v . Since u solves G-heat equation, we get ur , B t −r − ut, 0 = Z t −r −u t t − v, B v d v + Z t −r u x t − v, B v d B v + Z t −r u x x t − v, B v d〈B〉 v = Z t −r u x t − v, B v d B v + Z t −r u x x t − v, B v d〈B〉 v − 1 2 Z t −r u + x x − σ 2 u − x x d v. 2053 Theorem 4.5. When σ 0, then for any X ∈ L i p F T , we have X = E G [|ϕ·|] + Z t m Z s d B s + Z t m ηsd〈B〉 s − Z t m η + − σ 2 η − ds. Proof: When m = 1, for the regularity of the u, lim r →0 ur , B t −r ω = ϕB t ω. By Lemma 4.4, and path analysis in Section 3, we know ϕB t = ut , 0 + Z t u x t − v, B v d B v + Z t u x x t − v, B v d〈B〉 v − Z t u + x x − σ 2 u − x x d v. Due to the definition of G-expectation, E G [ϕB t ] = ut, 0, so the result holds when m = 1. By similar argument, we get ϕB T − B t = uT − t, 0 + Z T t u x T − v, B v − B t d B v + Z T t u x x T − v, B v − B t d〈B〉 v − Z T t u + x x − σ 2 u − x x d v. When m = 2, for each x ϕx, B T − B t = uT − t, x, 0 + Z T t u y T − v, x, B v − B t d B v + Z T t u y y T − v, x, B v − B t d〈B〉 v − Z T t u + y y T − v, x, B v − B t − σ 2 u − y y T − v, x, B v − B t d v. By continuous dependence estimate theorem in [13], we know for each fixed t, uT − t, x, 0 is lipschitz continuous and bounded with respect to x, then there exist η ∈ M 1 G 0, T and z ∈ M 2 G 0, T , such that uT − t, B t , 0 = E G [|uT − t, B t , 0 |] + Z t z s d B s + Z t η s d 〈B〉 s − Z t η + s − σ 2 η − s ds. 4.2 That is ϕB t , B T − B t = E G [ϕB t , B T − B t ] + Z T z s d B s + Z T η s d 〈B〉 s − Z T η + s − σ 2 η − s ds. Here η and z are different from 4.2. Then by induction, we know the result is true for any X ∈ L i p F T . 2054

4.3 Properties for the Symmetric Martingale

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52