Proof of Theorem 1.3.2 getdoc0ce7. 208KB Jun 04 2011 12:04:05 AM

hence {survival} a.s. ⊂ { lim t →∞ r −t |η t | 0}. This proves 2.5. ƒ Proof of Theorem 1.3.1: a: If P |η ∞ | 0 0, then, by Lemma 2.1.2, {survival} = {|η ∞ | 0} a.s. We see from this and 2.3 that R ∞ R s ds ∞ a.s. on the event of survival, while R ∞ R s ds ∞ is obvious outside the event of survival. b: This follows from Lemma 2.1.1 ƒ

2.2 Proof of Theorem 1.3.2

Let p be a transition function of a symmetric discrete-time random walk defined by px =    k x + k −x 2 |k| − k if x 6= 0, if x = 0. and p n be the n-step transition function. We set g n x = δ x,0 + n X k=1 p k x. Lemma 2.2.1. Under the assumptions of Theorem 1.3.2, there exists n such that: X x, y g n x − yβ x, y 2|k| − k . 2.6 Proof: Since the discrete-time random walk with the transition probability p is the jump chain of the continuous-time random walk S t t ≥0 , P x S with the generator 1.21, we have that 1 lim n →∞ g n x = |k| − k Gx for all x ∈ Z d . For d ≥ 3, Gx ∞ for any x ∈ Z d and β x, y 6= 0 only when |x|, | y| ≤ r K , we see from 1 that lim n →∞ X x, y g n x − yβ x, y = |k| − k X x, y Gx − yβ x, y . Thus, 2.6 holds for all large enough n’s. To show 2.6 for d = 1, 2, we will prove that lim n →∞ X x, y g 2n −1 x − yβ x, y = ∞. 647 For f ∈ ℓ 1 Z d , we denote its Fourier transform by b f θ = X x ∈Z d f x exp ix · θ , θ ∈ I def = [−π, π] d . We then have that g 2n −1 x = 1 2π d Z I 1 − bpθ 2n 1 − bpθ exp ix · θ dθ and hence that X x, y g 2n −1 x − yβ x, y = 1 2π d Z I 1 − bpθ 2n 1 − bpθ X x, y exp ix − y · θ E[K − δ x K − δ y ]dθ = 1 2π d Z I 1 − bpθ 2n 1 − bpθ E[ |b Kθ − 1| 2 ]dθ . Since p · is even, we see that bpθ ∈ [−1, 1] for all θ ∈ I. Also, by 1.6, there exist constants c i 0 i = 1, 2, 3 such that: ≤ 1 − c 1 |θ | 2 ≤ bpθ ≤ 1 − c 2 |θ | 2 for |θ | ≤ c 3 . These imply that lim n →∞ X x, y g 2n −1 x − yβ x, y ≥ 1 2π d c 1 Z |θ |≤c 2 E[ |b Kθ − 1| 2 ] |θ | 2 dθ . The integral on the right-hand-side diverges if d ≤ 2, since E[ |b K0 − 1| 2 ] = E[|K| − 1 2 ] 6= 0. ƒ We take an n in Lemma 2.2.1 and fix it. We then set: g = g n and S t = 〈 g ∗ ρ t , ρ t 〉, 2.7 where the bracket 〈 ·, · 〉 and ∗ stand for the inner product of ℓ 2 Z d and the discrete convolution respectively. In what follows, we will often use the Hausdorff-Young inequality: | f ∗ h 2 | 12 ≤ | f ||h 2 | 12 f ∈ ℓ 1 Z d , h ∈ ℓ 2 Z d . 2.8 For example, we have that ≤ S t Schwarz ≤ |g ∗ ρ t 2 | 12 |ρ t 2 | 12 2.8 ≤ |g||ρ t 2 | = |g|R t ∞. 2.9 The proof of Theorem 1.3.2 is based on the following Lemma 2.2.2. Let S t = S + M t + A t be the Doob decomposition, where M · and A · are a martingale and a predictable process, respectively. Then, 648 a There is constants c 1 , c 2 ∈ 0, ∞ such that: A t ≥ Z t € c 1 R s − c 2 R 32 s Š ds 2.10 b ¨Z ∞ R s ds = ∞ « ⊂    lim t →∞ M t R t R s ds = 0    a.s. 2.11 Proof of Theorem 1.3.2: By Theorem 1.3.1 and the remark after Theorem 1.3.2, it is enough to prove that 1 lim t ր∞ R t R 32 s ds R t R s ds ≥ c a.s. on D def = ¨Z ∞ R t d t = ∞ « for a positive constant c. It follows from 2.9 and 2.11 that lim t →∞ A t R t R s ds = 0 a.s. on D and hence from 2.10 that lim t →∞ R t R 32 s ds R t R s ds ≥ c 1 c 2 a.s. on D. This proves 1 and hence Theorem 1.3.2. ƒ

2.3 Proof of Lemma 2.2.2

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52