SDE description of the process Proof of Theorem 1.3.1

so that 1.28 becomes: L S hx + 1 2 δ 0,x X y,z h y − zβ y,z = 0, x ∈ Z d , cf. 1.21. Under the assumption 1.26, a choice of such function h is given by h = 1 + cG, where c = E[ |K| − 1 2 ] 1 − 1 2 P x, y ∈Z d Gx − yβ x, y . 3 Let π d be the return probability for the simple random walk on Z d . Also, let 〈 ·, · 〉 and ∗ be the inner product of ℓ 2 Z d and the discrete convolution respectively. We then have that 1.22 ⇐⇒ λ 1 2d1 −2π d for BCPP, E[W 2 ] 2|k|−1G0 〈 G∗k,k 〉 for the potlatch process. 1.29 For BCPP, 1.29 can be seen from that cf. [NY09a, p. 965] β x, y = 1 {x = 0} + λ1{|x| = 1} 2dλ + 1 δ x, y , and G0 = 2dλ + 1 2dλ 1 1 − π d . To see 1.29 for the potlatch process, we note that 1 2 k + ˇk ∗ G = |k|G − δ , with ˇk x = k −x and that β x, y = E[W 2 ]k x k y − k x δ y,0 − k y δ x,0 + δ x,0 δ y,0 . Thus, X x, y ∈Z d Gx − yβ x, y = E[W 2 ]〈 G ∗ k, k 〉 − 〈 G, k + ˇk 〉 + G0 = E[W 2 ]〈 G ∗ k, k 〉 + 2 − 2|k| − 1G0, from which 1.29 for the potlatch process follows.

1.4 SDE description of the process

We now give an alternative description of the process in terms of a stochastic differential equation SDE. We introduce random measures on [0, ∞ × [0, ∞ Z d by N z dsdξ = X i ≥1 1 {T z,i , K z,i ∈ dsdξ}, N z t dsdξ = 1 {s≤t} N z dsdξ. 1.30 Then, N z , z ∈ Z d are independent Poisson random measures on [0, ∞ × [0, ∞ Z d with the intensity ds × PK ∈ ·. The precise definition of the process η t t ≥0 is then given by the following stochastic differential equation: η t,x = η 0,x + X z ∈Z d Z N z t dsdξ € ξ x −z − δ x,z Š η s −,z . 1.31 By 1.3, it is standard to see that 1.31 defines a unique process η t = η t,x , t ≥ 0 and that η t is Markovian. 643 2 Proofs It is convenient to introduce the following notation: ν = PK ∈ · ∈ P [0, ∞ Z d , the law of K. 2.1 e N z dsdξ = N z dsdξ − dsνdξ, e N z t dsdξ = 1 s ≤t e N z dsdξ. 2.2

2.1 Proof of Theorem 1.3.1

The proof of Theorem 1.3.1 is based on the following Lemma 2.1.1. { |η ∞ | = 0, survival } = ¨ Z ∞ R s ds = ∞ « , a.s. 2.3 Moreover, there exists a constant c 0 such that: 1.18 holds a.s. on the event n R ∞ R s ds = ∞ o . Proof: We see from 1.31 that |η t | = |η | + X z Z e N z t dsdξ|η s − ||ξ| − 1ρ s −,z cf. 2.2 = |η | + Z t |η s − |d M s where M t = X z Z e N z t dsdξ|ξ| − 1ρ s −,z . Then, by the Doléans-Dale exponential formula e.g., [HWY92, p. 248, 9.39], |η t | = exp M t D t , where D t = Y s ≤t 1 + ∆M s exp −∆M s , with ∆M t = M t − M t − . Note also the predictable quadratic variation of M · is given by 1 〈 M 〉 t = E[|K| − 1 2 ] Z t R s ds. Since −1 ≤ ∆M t ≤ b K − 1 ∞, we have that See e.g.[HWY92, p. 222, 8.32] 2 { 〈 M 〉 ∞ ∞ } ⊂ {[M] ∞ ∞, M t converges as t ր ∞} a.s. 3 { 〈 M 〉 ∞ = ∞ } ⊂ lim t →∞ 〈 M 〉 t [M ] t = 1, lim t →∞ M t 〈 M 〉 t = 0 a.s. 644 where [M ] t = X s ≤t ∆M s 2 We start with the “ ⊃” part of 2.3: Note that 1 + ue −u ≤ e −c 1 u 2 for −1 ≤ u ≤ b K − 1, where c 1 is a constant. We suppose that R ∞ R s ds = ∞, or equivalently that, 〈 M 〉 ∞ = ∞. Then, for large t, exp M t D t ≤ exp M t − c 1 [M ] t 3 ≤ exp  − c 1 2 〈 M 〉 t ‹ 1 ≤ exp ‚ −c 2 Z t R s ds Œ This shows that R ∞ R s ds = ∞ implies |η ∞ | = 0, together with the bound 1.18. We now turn to the “ ⊂” part of 2.3: We need to prove that 4 { R ∞ R s ds ∞ survival} a.s. ⊂ { |η ∞ | 0}. We have 5 { R ∞ R s ds ∞} 1–2 ⊂ {M t converges as t ր ∞} a.s. On the other hand, X s ≤t 1 + ∆M s exp −∆M s − 1 ≤ e 2 [M ] t , since |1 + ue −u − 1| ≤ eu 2 2 for u ≥ −1. Thus, 6 { R ∞ R s ds ∞, survival} ⊂ D t converges to a positive limit as t ր ∞ a.s. We now obtain 4 by 5–6. ƒ We state one more technical lemma: Lemma 2.1.2. Suppose that: P lim t →∞ r −t |η t | 0 0, 2.4 for some r 0. Then, {survival} = { lim t →∞ r −t |η t | 0}, P-a.s. 2.5 Proof: We follow the argument in [CY10, Lemma 4.3.1], which goes back to [Gri83, p. 701]. For s, y ∈ [0, ∞ × Z d , let η s, y t = η s, y t,x x ∈Z d , t ∈ [0, ∞ be the process starting from time s, with one particle at y: η s, y t,x = δ x, y + X z ∈Z d Z N z s,s+t] dudξξ x −z − δ x,z η s, y u −,z , where N z s,s+t] = N z s+t − N z s . Then, for all t ≥ s, η t,x = X y η s, y η s, y t −s,x and hence |η t | = X y η s, y |η s, y t −s |. 645 The assumption 2.4 implies that: P inf t ≥0 r −t |η t | 0 0, and hence that: 1 δ def = P inf t ≥0 r −t |η t | ǫ 0 for some ǫ ∈ 0, 12. We now define a sequence of stopping times σ 1 σ 2 . . . as follows. σ 1 = inf{t 0 ; 0 |η t | ≤ ǫr t }. Note at this point that: 2 Pσ 1 = ∞ ≥ δ, thanks to 1. Suppose that σ 1 , . . . , σ ℓ ℓ ≥ 1 have already been defined. If σ ℓ = ∞, we set σ n = ∞ for all n ≥ ℓ+1. Suppose that σ ℓ ∞. Then η σ ℓ 6≡ 0. Let Y ℓ be the minimum, in the lexicographical order, of y ∈ Z d such that η σ ℓ , y 6= 0. We now define σ ℓ+1 by: σ ℓ+1 = σ ℓ + inf{t 0 ; 0 |η σ ℓ ,Y ℓ t | ≤ ǫr t }. It is easy to see from the construction that: 3 Pσ ℓ ∞ i.o. = 0. Indeed, we have Pσ ℓ+1 ∞|F σ ℓ = Pσ 1 ∞ 2 ≤ 1 − δ, and hence Pσ ℓ+1 ∞ = Pσ ℓ ∞, σ ℓ+1 ∞ = Pσ ℓ ∞, Pσ ℓ+1 ∞|F σ ℓ ≤ 1 − δPσ ℓ ∞ ≤ 1 − δ ℓ+1 by induction. Then, 3 follows from the Borel-Cantelli lemma. By 3, we can pick a random ℓ ∈ N such that Pσ ℓ ∞, σ ℓ+1 = ∞ = 1. Let us focus on the event {σ ℓ ∞, σ ℓ+1 = ∞}. Then, η σ ℓ ,Y ℓ t is defined and |η t | ≥ η σ ℓ ,Y ℓ |η σ ℓ ,Y ℓ t −σ ℓ | for all t ≥ σ ℓ . Note also that, on the event of survival, σ ℓ+1 = ∞ implies that: |η σ ℓ ,Y ℓ t −σ ℓ | ≥ ǫr t −σ ℓ for t ≥ σ ℓ . Thus, a.s. on the event of survival, |η t | ≥ η σ ℓ ,Y ℓ |η σ ℓ ,Y ℓ t −σ ℓ | ≥ η σ ℓ ,Y ℓ ǫr t −σ ℓ for t ≥ σ ℓ 646 hence {survival} a.s. ⊂ { lim t →∞ r −t |η t | 0}. This proves 2.5. ƒ Proof of Theorem 1.3.1: a: If P |η ∞ | 0 0, then, by Lemma 2.1.2, {survival} = {|η ∞ | 0} a.s. We see from this and 2.3 that R ∞ R s ds ∞ a.s. on the event of survival, while R ∞ R s ds ∞ is obvious outside the event of survival. b: This follows from Lemma 2.1.1 ƒ

2.2 Proof of Theorem 1.3.2

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52