Salem’s Approach to the Littlewood Conjecture

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009 Title Page Contents ◭◭ ◮◮ ◭ ◮ Page 11 of 16 Go Back Full Screen Close   max 1≤k≤n k X j=1 a j h j 1   ∞ n=1 is unbounded. The constant c is independent of n, and the sequences involved here.

3.2. Salem’s Approach to the Littlewood Conjecture

We concentrate on the case where H = L 2 T and the orthonormal sequence is a subset of {e inx : n ∈ N}. Let m 1 m 2 m 3 · · · be an increasing sequence of natural numbers and let h k x = e im k x for all k ≥ 1 and x ∈ T. In addition, let D m x = m X k=−m e ikx be the m th Dirichlet kernel. For all N ≥ m ≥ 1, there is the partial sum X m k ≤ m a k h k x = D m ∗ X m k ≤ N a k h k x. It is a fact that D m is an even function which satisfies the inequalities: 3.1 |D m x| ≤ 2m + 1 for all x, 1|x| for 1 2m+1 x 2π − 1 2m+1 . Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009 Title Page Contents ◭◭ ◮◮ ◭ ◮ Page 12 of 16 Go Back Full Screen Close S ∗ px = sup m≥1 |D m ∗ px| satisfies kS ∗ pk 1 ≤ c log 2N + 1 kpk 1 . Proof. For such a trigonometric polynomial p, the partial sums are all partial sums of p ∗ D N , and all the Dirichlet kernels D m for 1 ≤ m ≤ N are dominated by a function whose L 1 norm is of the order of log2N + 1. We can combine this with the inequalities in Corollary 3.2 , since max 1≤k≤n k X j=1 a j h j 1 ≤ c log 2m n + 1 m X j=1 a j h j 1 . We then arrive at the main result in [ 14 ]. Corollary 3.5. For an increasing sequence m n ∞ n=1 of natural numbers and a se- quence of non-zero complex numbers a n ∞ n=1 the partial sums of the trigonometric series ∞ X k=1 a k e im k x satisfy min 1≤k≤n |a k | log n plog2m n + 1 ≤ c max 1≤k≤n k X j=1 a j e im j · 1 . This was Salem’s attempt at Littlewood’s conjecture, which was subsequently settled in [ 5 ] and [ 8 ]. Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009 Title Page Contents ◭◭ ◮◮ ◭ ◮ Page 13 of 16 Go Back Full Screen Close Notice that if {v 1 , . . . , v n } is an arbitrary linearly independent subset of H then there is a unique subset w n j : 1 ≤ j ≤ n ⊆ span {v 1 , . . . , v n } so that {v 1 , . . . , v n } and {w n 1 , . . . , w n n } are a bi-orthogonal pair. See Theorem 15 in Chapter 3 of [ 2 ]. We can apply Theorem 2.1 to the pair in either order. Corollary 3.6. For each n ≥ 2 and linearly independent subset {v 1 , . . . , v n } in an inner-product space H, with dual basis {w n 1 , . . . , w n n }, log n ≤ c max 1≤k≤n kw n k k H max 1≤k≤n k X j=1 v j H and log n ≤ c max 1≤k≤n kv k k H max 1≤k≤n k X j=1 w n j H . The constant c 0 is independent of n, H, and the sets of vectors.

3.4. Matrices

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52