302_09_www. 316KB Jun 04 2011 12:08:12 AM

(1)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page

Contents

◭◭ ◮◮

◭ ◮

Page1of 16

Go Back Full Screen

Close

AN INEQUALITY FOR BI-ORTHOGONAL PAIRS

CHRISTOPHER MEANEY

Department of Mathematics Faculty of Science

Macquarie University

North Ryde NSW 2109, Australia EMail:[email protected]

Received: 26 November, 2009

Accepted: 14 December, 2009

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 42C15, 46C05.

Key words: Bi-orthogonal pair, Bessel’s inequality, Orthogonal expansion, Lebesgue con-stants.

Abstract: We use Salem’s method [13, 14] to prove an inequality of Kwapie´n and Pełczy´nski concerning a lower bound for partial sums of series of bi-orthogonal vectors in a Hilbert space, or the dual vectors. This is applied to some lower bounds onL1norms for orthogonal expansions.


(2)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page

Contents

◭◭ ◮◮

◭ ◮

Page2of 16

Go Back Full Screen

Close

Contents

1 Introduction 3

2 The Kwapie ´n-Pełczy ´nski Inequality 4

3 Applications 8

3.1 L1estimates . . . 8

3.2 Salem’s Approach to the Littlewood Conjecture . . . 11

3.3 Linearly Independent Sequences . . . 13


(3)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page3of 16

Go Back Full Screen

Close

1.

Introduction

Suppose thatHis a Hilbert space,nN, and thatJ ={1, . . . , n}orJ =N. A pair

of sets {vj : j ∈J} and {wj : j ∈J} in H are said to be a bi-orthogonal pair when

hvj, wkiH =δjk, ∀j, k∈J.

The inequality in Theorem2.1 below comes from Section 6 of [6], where it was proved using Grothendieck’s inequality, absolutely summing operators, and esti-mates on the Hilbert matrix. Here we present an alternate proof, based on earlier ideas from Salem [13, 14], where Bessel’s inequality is combined with a result of Menshov [10]. Following the proof of Theorem 2.1, we will describe Salem’s method of usingL2inequalities to produceL1estimates on maximal functions. Such estimates are related to the stronger results of Olevski˘ı [11], Kashin and Szarek [4], and Bochkarev [1]. We conclude with an observation about the statement of Theo-rem2.1in a linear algebra setting. Some of these results were discussed in [9], where it was shown that Salem’s methods emphasized the universality of the Rademacher-Menshov Theorem.


(4)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page4of 16

Go Back Full Screen

Close

2.

The Kwapie ´n-Pełczy ´nski Inequality

Theorem 2.1. There is a positive constant c with the following property. For ev-eryn 1, every Hilbert space H, and every bi-orthogonal pair {v1, . . . , vn} and {w1, . . . , wn}inH,

(2.1) lognc max

1≤m≤nkwmkH 1max≤k≤n

k

X

j=1

vj

H

.

Proof. Equip [0,1] with a Lebesgue measure λ and let V = L2([0,1], H) be the space ofH-valued square integrable functions on[0,1], with inner product

hF, GiV = Z 1

0 h

F(x), G(x)iHdx

and norm

kFkV =

Z 1

0 k

F(x)k2Hdx

.

Suppose that {F1, . . . , Fn} is an orthonormal set in L2([0,1]) and define vectors

p1, . . . , pninV by

pk(x) =Fk(x)wk, 1≤k ≤n, x ∈[0,1]. Then

hpk(x), pj(x)iH =Fk(x)Fj(x) hwk, wjiH , 1≤j, k ≤n,

and so{p1, . . . , pn}is an orthogonal set inV. For everyP ∈V, Bessel’s inequality states that

(2.2)

n

X

k=1

|hP, pkiV|2 kwkk2H


(5)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page5of 16

Go Back Full Screen

Close

Note that here

hP, pkiV =

Z 1

0 h

P(x), wkiHFk(x)dx, 1≤k ≤n.

Now consider a decreasing sequence f1 ≥ f2 ≥ · · · ≥ fn ≥ fn+1 = 0 of characteristic functions of measurable subsets of[0,1]. For each scalar-valuedG L2([0,1])define an element ofV by setting

PG(x) = G(x) n

X

j=1

fj(x)vj.

The Abel transformation shows that

PG(x) = G(x) n

X

k=1

∆fk(x)σk,

where ∆fk = fk − fk+1 and σk = Pkj=1vj, for 1 ≤ k ≤ n. The functions

∆f1, . . . ,∆fn are characteristic functions of mutually disjoint subsets of[0,1]and for each0x1at most one of the values∆fk(x)is non-zero. Notice that

kPG(x)kH2 =|G(x)|2 n

X

k=1

∆fk(x)kσkk2H. Integrating over[0,1]gives

kPGk2V ≤ kGk22 max 1≤k≤nkσkk

2 H. Note that

hPG(x), pk(x)iH =G(x)fk(x)Fk(x) hvk, wkiH, 1≤k ≤n, and


(6)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page6of 16

Go Back Full Screen

Close

hPG, pkiV =

Z 1

0

G(x)fk(x)Fk(x)dx hvk, wkiH, 1≤k≤n. Combining this with Bessel’s inequality (2.2), we arrive at the inequality (2.3) n X k=1 Z [0,1]

GfkFkdλ

2 1

kwkk2H

≤ kGk22 max

1≤k≤nkσkk 2 H.

This implies that (2.4) n X k=1 Z [0,1]

GfkFkdλ

2! ≤ max

1≤j≤nkwkk 2 H

kGk22

max

1≤k≤nkσkk 2 H

.

We now concentrate on the case where the functionsF1, . . . , Fn are given by Men-shov’s result (Lemma 1 on page 255 of Kashin and Saakyan [3]). There is a constant

c0 >0, independent ofn, so that

(2.5) λ

(

x[0,1] : max

1≤j≤n

j X k=1

Fk(x)

> c0log(n)√n

)!

≥ 1

4.

Let us useM(x)to denote the maximal function M(x) = max

1≤j≤n

j X k=1

Fk(x)

, 0x1.

Define an integer-valued functionm(x)on[0,1]by

m(x) = min ( m : m X k=1

Fk(x)

=M(x) )

.


(7)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page7of 16

Go Back Full Screen

Close

{x[0,1] : m(x)k}.

Then

n

X

k=1

fk(x)Fk(x) =Sm(x)(x) = m(x)

X

k=1

Fk(x), ∀0≤x≤1. For an arbitraryGL2([0,1])we have

Z 1

0

G(x)Sm(x)(x)dx= n

X

k=1

Z 1

0

G(x)fk(x)Fk(x)dx.

Using the Cauchy-Schwarz inequality on the right hand side, we have (2.6)

Z 1

0

G(x)Sm(x)(x)dx

n

n

X

k=1

Z 1

0

GfkFkdλ

2!1/2

,

for allGL2([0,1]). We will use the functionGwhich has|G(x)|= 1everywhere on[0,1],with

G(x)Sm(x)(x) =M(x), ∀0≤x≤1. In this case, the left hand side of (2.6) is

kMk1 ≥ c0

4 log(n)

n,

because of (2.5). Combining this with (2.6) we have

c0

4 log(n)

n√n

n

X

k=1

Z 1

0

GfkFkdλ

2!1/2

.

This can be put back into (2.4) to obtain (2.1). Notice thatkGk2 = 1 on the right hand side of (2.3).


(8)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page8of 16

Go Back Full Screen

Close

3.

Applications

3.1. L1estimates

In this section we useH =L2(X, µ), for a positive measure space(X, µ). Suppose we are given an orthonormal sequence of functions (hn)∞n=1 in L2(X, µ), and sup-pose that each of the functions hn is essentially bounded on X. Let (an)

∞ n=1 be a sequence of non-zero complex numbers and set

Mn = max

1≤j≤nkhjk∞and S ∗

n(x) = max 1≤k≤n

k

X

j=1

ajhj(x)

, forxX, n 1.

Lemma 3.1. For a set of functions{h1, . . . , hn} ⊂L2(X, µ)∩L∞(X, µ)and

max-imal function

S∗

n(x) = max1kn

k

X

j=1

ajhj(x)

,

we have

|ajhj(x)| ≤2Sn∗(x), ∀x∈X,1≤j ≤n,

and

Pk

j=1ajhj(x)

S∗

n(x) ≤

1, 1k nandxwhereSn∗(x)6= 0.

Proof. The first inequality follows from the triangle inequality and the fact that

ajhj(x) = j

X

k=1

akhk(x)− j−1

X

k=1


(9)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page

Contents

◭◭ ◮◮

◭ ◮

Page9of 16

Go Back

Full Screen

Close for2j n. The second inequality is a consequence of the definition ofSn∗.

Fixn1and let

vj(x) =ajhj(x) (Sn∗(x)) −1/2

andwj(x) = a−j1hj(x) (Sn∗(x)) 1/2

for allxXwhereSn∗(x)6= 0and1j n. From their definition, {v1, . . . , vn} and {w1, . . . , wn}

are a bi-orthogonal pair inL2(X, µ). The conditions we have placed on the functions

hj give:

kwjk2

2 =|aj| −2Z

X |

hj|2(S∗ n)dµ≤

M2 n

min1≤k≤n|ak|2 kS∗ nk1 and k X j=1 vj 2 2 = Z X 1 (S

n) k X j=1

ajhj

2 dµ k X j=1

ajhj

1 .

We can put these estimates into (2.1) and find that

lognc Mn

min1≤k≤n|ak|k

S∗

nk1/21 max 1≤k≤n

k X j=1

ajhj

1/2 1 .

We could also say that

max

1≤k≤n

k X j=1

ajhj

1

≤ kS∗ nk1 and so

log(n)c Mn

min1≤k≤n|ak|kS ∗ nk1.


(10)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page

Contents

◭◭ ◮◮

◭ ◮

Page10of 16

Go Back

Full Screen

Close Corollary 3.2. Suppose that(hn)

n=1 is an orthonormal sequence inL2(X, µ)

con-sisting of essentially bounded functions. For each sequence(an)∞n=1of complex

num-bers and eachn 1,

min

1≤k≤n|ak| logn

2

≤c

max

1≤k≤nkhkk∞

2 max

1≤k≤n

k X j=1

ajhj

1 max

1≤k≤n

k X j=1

ajhj

1 and min

1≤k≤n|ak| logn≤c

max

1≤k≤nkhkk∞

max

1≤k≤n

k X j=1

ajhj

1 .

The constantcis independent ofn, and the sequences involved here.

As observed in [4], this can also be obtained as a consequence of [11]. In addition, see [7].

The following is a paraphrase of the last page of [13]. For the special case of Fourier series on the unit circle, see Proposition 1.6.9 in [12].

Corollary 3.3. Suppose that(hn)∞n=1 is an orthonormal sequence inL2(X, µ)

con-sisting of essentially bounded functions with khnk∞ ≤ M for alln ≥ 1. For each

decreasing sequence(an) ∞

n=1of positive numbers and eachn ≥1,

(an logn)2 ≤cM2

max

1≤k≤n

k X j=1

ajhj

1 max

1≤k≤n

k X j=1

ajhj

1 and

an logn ≤cM

max

1≤k≤n

k X j=1

ajhj

1 .


(11)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page

Contents

◭◭ ◮◮

◭ ◮

Page11of 16

Go Back

Full Screen

Close

In particular, if(anlogn) ∞

n=1is unbounded then

max

1≤k≤n

k

X

j=1

ajhj

1

n=1

is unbounded. The constantcis independent ofn, and the sequences involved here.

3.2. Salem’s Approach to the Littlewood Conjecture

We concentrate on the case whereH = L2(T) and the orthonormal sequence is a subset of{einx : n N}. Let

m1 < m2 < m3 <· · · be an increasing sequence of natural numbers and let

hk(x) = eimkx for allk1andxT.In addition, let

Dm(x) = m

X

k=−m

eikx

be themth Dirichlet kernel. For allN m1, there is the partial sum

X

mk≤m

akhk(x) =Dm∗

X

mk≤N

akhk

! (x).

It is a fact thatDm is an even function which satisfies the inequalities:

(3.1) |Dm(x)| ≤

(

2m+ 1 for allx,

1/|x| for 2m+11 < x <2π 1 2m+1.


(12)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page12of 16

Go Back Full Screen

Close

Lemma 3.4. Ifpis a trigonometric polynomial of degreeN,then the maximal func-tion of its Fourier partial sums

S∗

p(x) = sup

m≥1|

Dm∗p(x)|

satisfies

kS∗

pk1 clog (2N+ 1)kpk1.

Proof. For such a trigonometric polynomialp, the partial sums are all partial sums of pDN, and all the Dirichlet kernels Dm for1 ≤ m ≤ N are dominated by a function whoseL1 norm is of the order oflog(2N+ 1).

We can combine this with the inequalities in Corollary3.2, since

max

1≤k≤n

k

X

j=1

ajhj

1

≤clog (2mn+ 1)

m

X

j=1

ajhj

1

.

We then arrive at the main result in [14].

Corollary 3.5. For an increasing sequence (mn) ∞

n=1 of natural numbers and a

se-quence of non-zero complex numbers(an) ∞

n=1 the partial sums of the trigonometric

series

X

k=1

akeimkx

satisfy

min

1≤k≤n|ak|

logn

p

log(2mn+ 1)

≤c max

1≤k≤n

k

X

j=1

ajeimj(·)

1

.

This was Salem’s attempt at Littlewood’s conjecture, which was subsequently settled in [5] and [8].


(13)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page13of 16

Go Back Full Screen

Close 3.3. Linearly Independent Sequences

Notice that if{v1, . . . , vn}is an arbitrary linearly independent subset ofHthen there is a unique subset

wn

j : 1≤j ≤n ⊆span({v1, . . . , vn})

so that{v1, . . . , vn}and{w1n, . . . , wn}n are a bi-orthogonal pair. See Theorem 15 in Chapter 3 of [2]. We can apply Theorem2.1to the pair in either order.

Corollary 3.6. For eachn 2and linearly independent subset {v1, . . . , vn}in an

inner-product spaceH, with dual basis{wn

1, . . . , wn}n ,

logn c max

1≤k≤nkw n

kkH max 1≤k≤n

k

X

j=1

vj

H and

lognc max

1≤k≤nkvkkH 1max≤k≤n

k

X

j=1

wnj

H

.

The constantc > 0is independent ofn,H, and the sets of vectors.

3.4. Matrices

Suppose thatAis an invertiblen×nmatrix with complex entries and columns

a1, . . . , an ∈Cn. Letb1, . . . , bnbe the rows ofA−1. From their definition

n

X

j=1


(14)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page14of 16

Go Back Full Screen

Close

and so the two sets of vectors

n

bT

1, . . . , bTn

o

and {a1, . . . , an} are a bi-orthogonal pair inCn. Theorem2.1then says that

log(n)c max

1≤k≤nkbkk 1max≤k≤n

k

X

j=1

aj

.

The norm here is the finite dimensionalℓ2 norm. This brings us back to the material in [6]. Note that [4] has logarithmic lower bounds forℓ1-norms of column vectors of orthogonal matrices.


(15)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page15of 16

Go Back Full Screen

Close

References

[1] S.V. BOCHKAREV, A generalization of Kolmogorov’s theorem to biorthogo-nal systems, Proceedings of the Steklov Institute of Mathematics, 260 (2008), 37–49.

[2] K. HOFFMANANDR.A. KUNZE, Linear Algebra, Second ed., Prentice Hall, 1971.

[3] B.S. KASHIN AND A.A. SAAKYAN, Orthogonal Series, Translations of Mathematical Monographs, vol. 75, American Mathematical Society, Provi-dence, RI, 1989.

[4] B.S. KASHIN, A.A. SAAKYAN AND S.J. SZAREK, Logarithmic growth of

the L1-norm of the majorant of partial sums of an orthogonal series, Math.

Notes, 58(2) (1995), 824–832.

[5] S.V. KONYAGIN, On the Littlewood problem, Izv. Akad. Nauk SSSR Ser. Mat., 45(2) (1981), 243–265, 463.

[6] S. KWAPIE ´N ANDA. PEŁCZY ´NSKI, The main triangle projection in matrix spaces and its applications, Studia Math., 34 (1970), 43–68. MR 0270118 (42 #5011)

[7] S. KWAPIE ´N, A. PEŁCZY ´NSKI AND S.J. SZAREK, An estimation of the Lebesgue functions of biorthogonal systems with an application to the nonex-istence of some bases inCandL1, Studia Math., 66(2) (1979), 185–200. [8] O.C. McGEHEE, L. PIGNO AND B. SMITH, Hardy’s inequality and the L1


(16)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page16of 16

Go Back Full Screen

Close

[9] C. MEANEY, Remarks on the Rademacher-Menshov theorem, CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 42, Austral. Nat. Univ., Canberra, 2007, pp. 100–110.

[10] D. MENCHOFF, Sur les séries de fonctions orthogonales, (Premiére Partie. La convergence.), Fundamenta Math., 4 (1923), 82–105.

[11] A.M. OLEVSKI˘I, Fourier series with respect to general orthogonal systems.

Translated from the Russian by B. P. Marshall and H. J. Christoffers.,

Ergeb-nisse der Mathematik und ihrer Grenzgebiete. Band 86. Berlin-Heidelberg-New York: Springer-Verlag., 1975.

[12] M.A. PINSKY, Introduction to Fourier Analysis and Wavelets, Brooks/Cole, 2002.

[13] R. SALEM, A new proof of a theorem of Menchoff, Duke Math. J., 8 (1941), 269–272.


(1)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page11of 16 Go Back Full Screen

Close

In particular, if(anlogn) ∞

n=1is unbounded then

max 1≤k≤n

k X

j=1 ajhj

1

 ∞

n=1

is unbounded. The constantcis independent ofn, and the sequences involved here.

3.2. Salem’s Approach to the Littlewood Conjecture

We concentrate on the case whereH = L2(T) and the orthonormal sequence is a subset of{einx : n N}. Let

m1 < m2 < m3 <· · · be an increasing sequence of natural numbers and let

hk(x) = eimkx

for allk1andxT.In addition, let

Dm(x) = m X

k=−m

eikx

be themth Dirichlet kernel. For allN m1, there is the partial sum

X

mk≤m

akhk(x) =Dm∗

X

mk≤N

akhk !

(x). It is a fact thatDm is an even function which satisfies the inequalities:

(3.1) |Dm(x)| ≤ (

2m+ 1 for allx,

1/|x| for 2m1+1 < x <2π 1 2m+1.


(2)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page12of 16

Go Back Full Screen

Close

Lemma 3.4. Ifpis a trigonometric polynomial of degreeN,then the maximal func-tion of its Fourier partial sums

S∗

p(x) = sup

m≥1|

Dm∗p(x)| satisfies

kS∗

pk1 clog (2N+ 1)kpk1.

Proof. For such a trigonometric polynomialp, the partial sums are all partial sums of pDN, and all the Dirichlet kernels Dm for1 ≤ m ≤ N are dominated by a

function whoseL1 norm is of the order oflog(2N+ 1).

We can combine this with the inequalities in Corollary3.2, since

max 1≤k≤n k X j=1 ajhj

1

≤clog (2mn+ 1) m X j=1 ajhj

1 . We then arrive at the main result in [14].

Corollary 3.5. For an increasing sequence (mn) ∞

n=1 of natural numbers and a

se-quence of non-zero complex numbers(an) ∞

n=1 the partial sums of the trigonometric

series

∞ X

k=1

akeimkx satisfy

min 1≤k≤n|ak|

logn

p

log(2mn+ 1)

≤c max 1≤k≤n k X j=1

ajeimj(·) 1 .

This was Salem’s attempt at Littlewood’s conjecture, which was subsequently settled in [5] and [8].


(3)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page13of 16

Go Back Full Screen

Close 3.3. Linearly Independent Sequences

Notice that if{v1, . . . , vn}is an arbitrary linearly independent subset ofHthen there is a unique subset

wn

j : 1≤j ≤n ⊆span({v1, . . . , vn})

so that{v1, . . . , vn}and{w1n, . . . , wn}n are a bi-orthogonal pair. See Theorem 15 in Chapter 3 of [2]. We can apply Theorem2.1to the pair in either order.

Corollary 3.6. For eachn 2and linearly independent subset {v1, . . . , vn}in an inner-product spaceH, with dual basis{wn

1, . . . , wn}n , logn c max

1≤k≤nkw n

kkH max

1≤k≤n

k X

j=1 vj

H

and

lognc max

1≤k≤nkvkkH 1max≤k≤n

k X

j=1 wnj

H

. The constantc > 0is independent ofn,H, and the sets of vectors. 3.4. Matrices

Suppose thatAis an invertiblen×nmatrix with complex entries and columns a1, . . . , an ∈Cn.

Letb1, . . . , bnbe the rows ofA−1. From their definition n

X

j=1


(4)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page14of 16

Go Back Full Screen

Close and so the two sets of vectors

n

bT

1, . . . , bTn o

and {a1, . . . , an}

are a bi-orthogonal pair inCn. Theorem2.1then says that

log(n)c max

1≤k≤nkbkk 1max≤k≤n

k X

j=1 aj

.

The norm here is the finite dimensionalℓ2 norm. This brings us back to the material in [6]. Note that [4] has logarithmic lower bounds forℓ1-norms of column vectors of orthogonal matrices.


(5)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page15of 16

Go Back Full Screen

Close

References

[1] S.V. BOCHKAREV, A generalization of Kolmogorov’s theorem to biorthogo-nal systems, Proceedings of the Steklov Institute of Mathematics, 260 (2008), 37–49.

[2] K. HOFFMANANDR.A. KUNZE, Linear Algebra, Second ed., Prentice Hall, 1971.

[3] B.S. KASHIN AND A.A. SAAKYAN, Orthogonal Series, Translations of Mathematical Monographs, vol. 75, American Mathematical Society, Provi-dence, RI, 1989.

[4] B.S. KASHIN, A.A. SAAKYAN AND S.J. SZAREK, Logarithmic growth of the L1-norm of the majorant of partial sums of an orthogonal series, Math.

Notes, 58(2) (1995), 824–832.

[5] S.V. KONYAGIN, On the Littlewood problem, Izv. Akad. Nauk SSSR Ser. Mat.,

45(2) (1981), 243–265, 463.

[6] S. KWAPIE ´N ANDA. PEŁCZY ´NSKI, The main triangle projection in matrix spaces and its applications, Studia Math., 34 (1970), 43–68. MR 0270118 (42 #5011)

[7] S. KWAPIE ´N, A. PEŁCZY ´NSKI AND S.J. SZAREK, An estimation of the Lebesgue functions of biorthogonal systems with an application to the nonex-istence of some bases inCandL1, Studia Math., 66(2) (1979), 185–200. [8] O.C. McGEHEE, L. PIGNO AND B. SMITH, Hardy’s inequality and the L1


(6)

Bi-orthogonal Pairs Christopher Meaney vol. 10, iss. 4, art. 94, 2009

Title Page Contents

◭◭ ◮◮

◭ ◮

Page16of 16

Go Back Full Screen

Close [9] C. MEANEY, Remarks on the Rademacher-Menshov theorem, CMA/AMSI

Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 42, Austral. Nat. Univ., Canberra, 2007, pp. 100–110.

[10] D. MENCHOFF, Sur les séries de fonctions orthogonales, (Premiére Partie. La convergence.), Fundamenta Math., 4 (1923), 82–105.

[11] A.M. OLEVSKI˘I, Fourier series with respect to general orthogonal systems.

Translated from the Russian by B. P. Marshall and H. J. Christoffers.,

Ergeb-nisse der Mathematik und ihrer Grenzgebiete. Band 86. Berlin-Heidelberg-New York: Springer-Verlag., 1975.

[12] M.A. PINSKY, Introduction to Fourier Analysis and Wavelets, Brooks/Cole, 2002.

[13] R. SALEM, A new proof of a theorem of Menchoff, Duke Math. J., 8 (1941), 269–272.


Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52