The size of the largest component

for all r ≥ 2a + 1. The remainder of the estimate is concerned with comparing the density p θ rn with nr −1 θ CPθ , n{[r − n, r − a − 1]}. From [ABT, Theorem 11.12], it follows that | CPθ , n{[r − n, r − a − 1]} − P θ {[rn − 1, r − an}| ≤ cθ n −θ ∧1 , 3.22 for a constant c θ , and then, from [ABT, 4.23 and 4.20], |nr −1 θ P θ {[rn − 1, r − an} − p θ rn| 3.23 = nr −1 θ |P θ {[rn − 1, r − an} − P θ {[rn − 1, rn}| ≤ c ′ θ nr −1 an θ ∧1 so long as r ≥ 2a. Combining 3.15, 3.21, 3.22 and 3.23, the theorem follows with ǫ 5 n, a, m; r := n r n 2 θ 1 + θ nr −1 ǫ 1 n, a, m + ǫ 2 n, a, m + θ ǫ 4 n, a, m + c ′′ θ a + 1n θ ∧1 o ; 3.24 note that, for 2a ≤ n2 ≤ r ≤ n, the bound can be replaced by the uniform ǫ ′ 5 n, a, m := 2 ¦ ǫ 2 n, a, m + 4n −1 θ 1 + θ ǫ 1 n, a, m + c ′′ θ a + 1n θ ∧1 © . 3.25 If QLC holds, D 1 T a,n = O{a + 1n} γ for some γ 0, and choosing m = m n tending to infinity slowly enough ensures that ǫ l n, a n , m n → 0 for l = 1, 2 and 4; this implies that ǫ 5 n, a n , m n , r → 0 uniformly in r ≥ nx, for any x 0. If QLC2 holds, choose m to be an appropriate power of {a + 1n}. 4 Quasi-logarithmic structures In this section, we consider the two common properties shared by logarithmic combinatorial struc- tures that were discussed in the Introduction, and show that they are also true for quasi-logarithmic structures. For each of the properties, the local approximation of P[T a,n = r] in Theorem 3.5 is the fundamental relation from which everything else follows. Other aspects of the asymptotic be- haviour of logarithmic combinatorial structures could be extended to quasi-logarithmic structures by analogous methods.

4.1 The size of the largest component

The following theorem is an extension of a result proved by Kingman 1977 in the case of θ -tilted random permutations. A version for logarithmic structures can be found in [ABT, Theorem 7.13]. Theorem 4.1. Let L n := max 1 ≤ i ≤ n : C n i be the size of the largest component. Then, if QLC holds, lim n →∞ L n −1 L n = L L , 893 where L is a random variable concentrated on 0, 1], whose distribution is given by the density function f θ x := e γθ Γθ + 1x θ −2 p θ 1 − xx , for all x ∈ 0, 1]. In particular, if θ = 1, lim n →∞ P L n ≤ n y = ρ y , for all y ≥ 1, where ρ is Dickman’s function Dickman, 1930. Proof. Fix x ∈ 0, 1]. Then P n −1 L n ≤ x = P C n ⌊nx⌋+1 = · · · = C n n = 0 = n Y i= ⌊nx⌋+1 P Z i = 0 P T 0, ⌊nx⌋ = n P T 0,n = n . 4.1 Theorem 3.5 yields P T 0, ⌊nx⌋ = n P T 0,n = n = np θ n⌊nx⌋ ⌊nx⌋p θ 1 § 1 + O min m {ǫ 5 ⌊nx⌋, 0, m; n} + min m {ǫ 5 n, 0, m; n} ª . 4.2 Writing θ i := iEZ i and y i := θ i 1 + E i i r i , where E i := P ∞ k=1 ǫ ik , we obtain n Y i= ⌊x n⌋+1 P Z i = 0 = exp − n X i= ⌊x n⌋+1 θ i i exp − n X i= ⌊x n⌋+1 θ i E i i n Y i= ⌊x n⌋+1 1 − y i e − y i r i . 4.3 From Lemma 5.3 below, exp − n X i= ⌊x n⌋+1 θ i i = x θ {1 + Oδm, θ + mnx}, for any m ⌊nx⌋2; then, easily, exp − n X i= ⌊x n⌋+1 θ i E i i = 1 + Oµ ⌊nx⌋ , and, because y i ≤ 3θ sup 2i ≤ 12 for all i ≥ i , n Y i= ⌊x n⌋+1 1 − y i e − y i r i = 1 + On −1 , so that Q n i= ⌊x n⌋+1 P Z i = 0 ∼ x θ under QLC. Combining this with 4.1 and 4.2, it follows that then lim n →∞ P n −1 L n ≤ x = x θ p θ 1x x p θ 1 =: F θ x , 4.4 where F θ is a distribution function with density f θ [ABT, p. 108]. If θ = 1, then p θ x = e −γ ρx. This proves the theorem. Under QLC2, the convergence rate in 4.4 for each x 0 is of order On −η 3 , for some η 3 0. 894 One can also prove local versions of the convergence theorem. However, they have to involve the particular sequence θ i , since, for instance, P[L n = r] = 0 if θ r = 0, because then Z r , and hence also C n r , are zero a.s. A typical result is as follows. Theorem 4.2. If QLC holds, then, for any 0 x ≤ 1 such that 1x is not an integer, it follows that lim n →∞ |nP[L n = ⌊nx⌋] − θ ⌊nx⌋ θ f θ x| = 0. 4.5 Under QLC2, the convergence rate is of order On −η 4 , for some η 4 0. Proof. Arguing as in the proof of the previous theorem, P [L n = ⌊nx⌋] = n Y i= ⌊nx⌋+1 P Z i = 0 ⌊n⌊nx⌋⌋ X l=1 P [Z ⌊nx⌋ = l] P T 0, ⌊nx⌋−1 = n − l⌊nx⌋ P T 0,n = n . 4.6 Now, from Theorem 3.5, the ratios P T 0, ⌊nx⌋−1 = n − l⌊nx⌋ P T 0,n = n are bounded as n → ∞, uniformly for all 2 ≤ l ≤ ⌊n⌊nx⌋⌋, provided that 1x is not an integer, so that 1 − x⌊1x⌋ 0. Then X l ≥2 P [Z ⌊nx⌋ = l] ≤ r ⌊nx⌋ P [Z ⌊nx⌋,1 ≥ 2] + r ⌊nx⌋ 2 P[Z ⌊nx⌋,1 = 1] 2 ≤ 1 ⌊nx⌋ µ ⌊nx⌋ + θ ∗ 2 2 ⌊nx⌋ 2 , implying that lim n →∞ n P l ≥2 P [Z ⌊nx⌋ = l] = 0. Hence the sum of the terms for l ≥ 2 on the right hand side of 4.6 contributes an asymptotically negligible amount to the quantity nP[L n = ⌊nx⌋] as n → ∞. For the l = 1 term in 4.6, both the product and the ratio of point probabilities are treated as in the proof of Theorem 4.1, giving the limit x θ −1 p θ 1 − xxp θ 1, and |P[Z ⌊nx⌋ = 1] − θ ⌊nx⌋ ⌊nx⌋| ≤ µ ⌊nx⌋ ⌊nx⌋, so that lim n →∞ |nP[L n = ⌊nx⌋] − x θ −1 {p θ 1 − xxp θ 1} x −1 θ ⌊nx⌋ | = 0. This completes the proof of 4.5. The remaining statement follows as usual, by taking greater care of the magnitudes of the errors in the various approximation steps. In order to relax the condition that 1 x is not integral, it is necessary to strengthen the assumptions a little; for example, if x = 1 2 and n is even, the contribution from the l = 2 term in 4.6 is of order O ǫ n 2,2 n 1 −θ , which could be large for θ 1. In order to get a limit of f θ x without involving the individual values θ i , it is necessary to average the point probabilities over an interval of integers around ⌊nx⌋, of a length that grows with n, but is itself of magnitude on. 895

4.2 The spectrum of small components

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52