The spectrum of small components

4.2 The spectrum of small components

We prove an analogue of the Kublius fundamental lemma Kubilius, 1964 for quasi-logarithmic structures, and thus extend results of Arratia et al. 1995 and [ABT, Theorem 7.7]; see also the corresponding result of Manstaviˇcius 2009, proved under different conditions. Theorem 4.3. For a n ≤ α , where α is small enough that min m ≥1 ǫ ′ 5 n, a, m ≤ 1 2 p θ 1, we have d TV L C n 1 , . . . , C n a , L Z 1 , . . . , Z a ≤ ǫ 6 n, a , 4.7 where the order of magnitude of ǫ 6 n, a is given in 4.16 below. If QLC holds, then lim n →∞ d TV L C n 1 , . . . , C n a n , L Z 1 , . . . , Z a n = 0 for every non-negative integer sequence a n = on. If QLC2 holds, the convergence rate is of order {a + 1n} η 5 for some η 5 0. Proof. The proof is similar to that of [ABT, Theorem 5.2]. We fix an n with the required properties, and we set p k := P[T a,n = k]. Then the conditioning relation entails d TV L C n 1 , . . . , C n a , L Z 1 , . . . , Z a = n X k=1 P [T 0,a = k] P [T 0,n = n] − p n −k + P [T 0,n = n] ≤ ⌊n2⌋ X k=0 ⌊n2⌋ X l=0 P [T 0,a = k]P[T 0,a = l] p n −l − p n −k + P [T 0,n = n] + ⌊n2⌋ X k=0 n X l= ⌊n2⌋+1 P [T 0,a = k]P[T 0,a = l] p n −l P [T 0,n = n] + n X k= ⌊n2⌋+1 P [T 0,a = k] . 4.8 We now separately bound the three terms in 4.8. The first term is just X ≤kl≤n2 P [T 0,a = k]P[T 0,a = l] p n −l − p n −k P [T 0,n = n] . 4.9 Now, from Theorem 3.5, using the bound given in 3.25, we have |np n −r − p θ 1 − rn| ≤ ǫ ′ 5 n, a, m , ≤ r ≤ n2, 4.10 so that, in 4.9, n |p n −l − p n −k | ≤ |p θ 1 − ln − p θ 1 − kn| + 2ǫ ′ 5 n, a, m ≤ c 1 θ n −1 |k − l| + 2ǫ ′ 5 n, a, m, for any choice of m and for some constant c 1 θ . Since also, from Theorem 3.5, nP[T 0,n = n] is uniformly bounded below whenever ǫ ′ 5 n, a, m ≤ 1 2 p θ 1, it follows that the first term in 4.8 is of order O n −1 E T 0,a + min m ≥1 ǫ ′ 5 n, a, m = O n −1 a + min m ≥1 ǫ ′ 5 n, a, m . 4.11 896 For the second term in 4.8, we have two bounds. First, n X l= ⌊n2⌋+1 P [T 0,a = l] P [T a,n = n − l] P [T 0,n = n] ≤ n max n 2≤l≤n P [T 0,a = l] nP[T 0,n = n] , where the denominator is uniformly bounded below whenever ǫ ′ 5 n, a, m ≤ 1 2 p θ 1, and, for n2 ≤ l ≤ n and a ≤ n4, nP[T 0,a = l] ≤ 2lP[T 0,a = l] ≤ 2θ ∗ P [T 0,a ≥ n4] + 2ǫ 2 a, 0, m ≤ 8θ ∗ 2 an + 2ǫ 2 a, 0, m , 4.12 from 3.15, with the last step following because ET 0,a ≤ aθ ∗ . The second bound is given by n X l= ⌊n2⌋+1 P [T 0,a = l] P [T a,n = n − l] P [T 0,n = n] ≤ P[T 0,a ≥ n2] sup j ∈Z + P [T a,n = j] P [T 0,n = n] ≤ 2a θ ∗ D 1 T a,n nP[T 0,n = n] , 4.13 again using Markov’s inequality, and the asymptotically important part is aD 1 T a,n . Thus the second term in 4.8 is of order O n −1 a + min {min m ≥1 ǫ 2 a, 0, m, aD 1 T a,n } . 4.14 Finally, the third term in 4.8 can be simply bounded from above by 2n −1 E T 0,a ≤ 2θ ∗ n −1 a . 4.15 Combining 4.11, 4.14 and 4.15 proves the first part of the theorem, with ǫ 6 n, a = O n −1 a + min m ≥1 ǫ ′ 5 n, a, m + min{min m ≥1 ǫ 2 a, 0, m, aD 1 T a,n } . 4.16 The remaining statements follow as usual.

4.3 Additive arithmetic semigroups

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52