Notation A model with self-interaction

1 Introduction

1.1 Notation

1. Probability: The symbol E∁ will denote the complement of the event E, and X ⊕ Y will denote the independent sum of the random variables X and Y . 2. Topology and measures: The boundary of the set B will be denoted by ∂ B and the closure of B will be denoted by clB, that is clB := B ∪∂ B; the interior of B will be denoted by ˙B and B ε will denote the ε-neighborhood of B. We will also use the notation ˙ B ε := { y ∈ B : B ε + y ⊂ B}, where B + b := { y : y − b ∈ B} and B t := {x ∈ R d : |x| t}. By a bounded rational rectangle we will mean a set B ⊂ R d of the form B = I 1 × I 2 × · · · × I d , where I i is a bounded interval with rational endpoints for each 1 ≤ i ≤ d. The family of all bounded rational rectangles will be denoted by R. M f R d and M 1 R d will denote the space of finite measures and the space of probability measures, respectively, on R d . For µ ∈ M f R d , we define kµk := µR d . |B| will denote the Lebesgue measure of B. The symbols “ w ⇒” and“ v ⇒” will denote convergence in the weak topology and in the vague topology, respectively. 3. Functions: For f , g 0, the notation f x = O gx will mean that f x ≤ C gx if x x with some x ∈ R, C 0; f ≈ g will mean that f g tends to 1 given that the argument tends to an appropriate limit. For N → R functions the notation f n = Θgn will mean that c ≤ f ngn ≤ C ∀n, with some c, C 0. 4. Matrices: The symbol I d will denote the d-dimensional unit matrix, and r A will denote the rank of a matrix A. 5. Labeling: In this paper we will often talk about the ‘i th particle’ of a branching particle system. By this we will mean that we label the particles randomly, but in a way that does not depend on their spatial position.

1.2 A model with self-interaction

Consider a dyadic i.e. precisely two offspring replaces the parent branching Brownian motion BBM in R d with unit time branching and with the following interaction between particles: if Z denotes the process and Z i t is the i th particle, then Z i t ‘feels’ the drift 1 n t X 1 ≤ j≤n t γ · Z j t − · , where γ 6= 0 , that is the particle’s infinitesimal generator is 1 2 ∆ + 1 n t X 1 ≤ j≤n t γ · Z j t − x · ∇. 1.1 Here and in the sequel, n t is a shorthand for 2 ⌊t⌋ , where ⌊t⌋ is the integer part of t. If γ 0, then this means attraction, if γ 0, then it means repulsion. 1940 To be a bit more precise, we can define the process by induction as follows. Z is a single particle at the origin. In the time interval [m, m + 1 we define a system of 2 m interacting diffusions, starting at the position of their parents at the end of the previous step at time m − 0 by the following system of SDE’s: dZ i t = dW m,i t + γ 2 m X 1 ≤ j≤2 m Z j t − Z i t dt; i = 1, 2, . . . , 2 m , 1.2 where W m,i , i = 1, 2, . . . , 2 m ; m = 0, 1, ... are independent Brownian motions. Remark 1 Attractive interaction. If there were no branching and the interval [m, m + 1 were extended to [0, ∞, then for γ 0 the interaction 1.2 would describe the ferromagnetic Curie- Weiss model, a model appearing in the microscopic statistical description of a spatially homogeneous gas in a granular medium. It is known that as m → ∞, a Law of Large Numbers, the McKean-Vlasov limit holds and the normalized empirical measure ρ m t := 2 −m 2 m X i=1 δ Z i t tends to a probability measure-valued solution of ∂ ∂ t ρ = 1 2 ∆ρ + γ 2 ∇ · ρ∇ f ρ , where f ρ x := R R d |x − y| 2 ρd y. See p. 24 in [8] and the references therein. ⋄ Remark 2 More general interaction. It seems natural to replace the linearity of the interaction by a more general rule. That is, to define and analyze the system where 1.2 is replaced by dZ i t = dW m,i t + 2 −m X 1 ≤ j≤2 m g |Z j t − Z i t | Z j t − Z i t |Z j t − Z i t | dt; i = 1, 2, . . . , 2 m , where the function g : R + → R has some nice properties. In this paper we treat the gx = γx case. This is part of a future project with J. Feng. ⋄ 1.3 Existence and uniqueness Notice that the 2 m interacting diffusions on [m, m+1 can be considered as a single 2 m d-dimensional Brownian motion with linear and therefore Lipschitz drift b : R 2 m d → R 2 m d : b x 1 , x 2 , ..., x d , x 1+d , x 2+d , ..., x 2d , ..., x 1+2 m −1d , x 2+2 m −1d , ..., x 2 m d =: γβ 1 , β 2 , ..., β 2 m d T , where β k = 2 −m x bk + x bk+d + ... + x bk+2 m −1d − x k , 1 ≤ k ≤ 2 m d, and b k ≡ k mod d, 1 ≤ bk ≤ d. This yields existence and uniqueness for our model. 1941

1.4 Results on the self-interacting model

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52