Putting Y and Z together

7 Proof of Theorem 16 Before we prove 5.1, we note the following. Fix x ∈ R d . Abbreviate ν x d y :=  γ π ‹ d 2 exp € −γ| y − x| 2 Š d y. Since 2 −n Z n dx, ν x ∈ M 1 R d , therefore, as is well known 8 , 2 −n Z n dx w ⇒ ν x is in fact equiva- lent to ∀g ∈ E : 2 −n 〈g, Z n 〉 → 〈g, ν x 〉, where E is any given family of bounded measurable functions with ν x -zero Lebesgue-zero sets of discontinuity that is separating for M 1 R d . In fact, one can pick a countable E , which, furthermore, consists of compactly supported functions. Such an E is given by the indicators of sets in R. Fix such a family E . Since E is countable, in order to show 5.1, it is sufficient to prove that for almost all x ∈ R d , P x 2 −n 〈g, Z n 〉 → 〈g, ν x 〉 = 1, g ∈ E . 7.1 We will carry out the proof of 7.1 in several subsections.

7.1 Putting Y and Z together

The following remark is for the interested reader familiar with [4] only. It can be skipped without any problem. Remark 21. Once we have the description of Y as in Subsections 4.1 and 4.2 and Remark 15, we can try to put them together with the Strong Law of Large Numbers for the local mass from [4] for the process Y . If the components of Y were independent and the branching rate were exponential, Theorem 6 of [4] would be readily applicable. However, since the 2 m components of Y are not independent as we have seen, their degree of freedom is 2 m − 1 and since, unlike in [4], we now have unit time branching, the method of [4] must be adapted to our setting. The reader will see that this adaptation requires quite a bit of extra work. ⋄ Let e f · = ef γ · := γ π d 2 exp € −γ| · | 2 Š , and note that e f is the density for N 0, 2γ −1 I d . We now claim that in order to show 7.1, it is enough to prove that for almost all x, P x 2 −n 〈g, Y n 〉 → 〈g, ef〉 = 1, g ∈ E . 7.2 This is because lim n →∞ 2 −n 〈g, Z n 〉 = lim n →∞ 2 −n 〈g, Y n + Z n 〉 = lim n →∞ 2 −n 〈g· + Z n , Y n 〉 = I + I I, where I := lim n →∞ 2 −n 〈g· + x, Y n 〉 8 See Proposition 4.8.12 and the proof of Propositions 4.8.15 in [1]. 1955 and I I := lim n →∞ 2 −n 〈g· + Z n − g· + x, Y n 〉. Now, 7.2 implies that for almost all x, I = 〈g· + x, ef·〉 P x -a.s., while the compact support of g, and Heine’s Theorem yields that I I = 0, P x − a.s. Hence, lim n →∞ 2 −n 〈g, Z n 〉 = 〈g· + x, ef·〉 = 〈g·, ef· − x〉, P x -a.s., giving 7.1. Next, let us see how 5.1 implies 5.2. Let g be continuous and bounded. Since 2 −n 〈Z n , g 〉 ≤ kgk ∞ , it follows by bounded convergence that lim n →∞ E2 −n 〈Z n , g 〉 = Z R d E x  lim n →∞ 2 −n 〈Z n , g 〉 ‹ Qdx = Z R d 〈g·, ef· − x〉Qdx, where Q ∼ N 0, 2I d . Now, if b f ∼ N 0, 2I d then, since f γ ∼ N 0, 2 + 1 2 γ I d , it follows that f γ = b f ∗ ef and Z R d 〈g·, ef· − x〉Qdx = 〈g·, f γ 〉, yielding 5.2. Next, notice that it is in fact sufficient to prove 7.2 under P instead of P x . Indeed, by Lemma 14, P x  lim n →∞ 2 −n 〈g, Y n 〉 = 〈g, ef〉 ‹ = P  lim n →∞ 2 −n 〈g, Y n 〉 = 〈g, ef〉 | N = x ‹ = P  lim n →∞ 2 −n 〈g, Y n 〉 = 〈g, ef〉 ‹ . Let us use the shorthand U n d y := 2 −n Y t d y; in general U t d y := 1 n t Y t d y. With this notation, our goal is to show that P 〈g, U n 〉 → 〈g, ef〉 = 1, g ∈ E . 7.3 Now, as mentioned earlier, we may and will take E := I , where I is the family of indicators of sets in R. Then, it remains to show that P ‚ U n B → Z B e f xdx Œ = 1, B ∈ R. 7.4

7.2 Outline of the further steps

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52